Multifunctional Molecule-Grafted V<sub>2</sub>C MXene as High-Kinetics Potassium-Ion-Intercalation Anodes for Dual-Ion Energy Storage Devices
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26620%2F23%3APU150359" target="_blank" >RIV/00216305:26620/23:PU150359 - isvavai.cz</a>
Výsledek na webu
<a href="https://doi.org/10.1002/aenm.202302961" target="_blank" >https://doi.org/10.1002/aenm.202302961</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1002/aenm.202302961" target="_blank" >10.1002/aenm.202302961</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Multifunctional Molecule-Grafted V<sub>2</sub>C MXene as High-Kinetics Potassium-Ion-Intercalation Anodes for Dual-Ion Energy Storage Devices
Popis výsledku v původním jazyce
Constructing dual-ion energy storage devices using anion-intercalation graphite cathodes offers the unique opportunity to simultaneously achieve high energy density and output power density. However, a critical challenge remains in the lack of proper anodes that match with graphite cathodes, particularly in sustainable electrolyte systems using abundant potassium. Here, a surface grafting approach utilizing multifunctional azobenzene sulfonic acid is reported, which transforms V2C MXene into a high-kinetics K+-intercalation anode (denoted ASA-V2C) for dual-ion energy storage devices. Importantly, the grafted azobenzene sulfonic acid offers extra K+-storage centers and fast K+-hopping sites, while concurrently acting as a buffer between V2C layers to mitigate the structural distortion during K+ intercalation/de-intercalation. These functionalities enable the V2C electrode with significantly enhanced specific capacity (173.9 mAh g(-1) vs 121.5 mAh g(-1) at 0.05 A g(-1)), rate capability (43.1% vs 12.0% at 20 A g(-1)), and cycling stability (80.3% vs 45.2% after 900 cycles at 0.05 A g(-1)). When coupled with an anion-intercalation graphite cathode, the ASA-V2C anode demonstrates its potential in a dual-ion energy storage device. Notably, the device depicts a maximum energy density of 175 Wh kg(-1) and a supercapacitor-comparable power density of 6.5 kW kg(-1), outperforming recently reported Li+-, Na+-, and K+-based dual-ion devices.
Název v anglickém jazyce
Multifunctional Molecule-Grafted V<sub>2</sub>C MXene as High-Kinetics Potassium-Ion-Intercalation Anodes for Dual-Ion Energy Storage Devices
Popis výsledku anglicky
Constructing dual-ion energy storage devices using anion-intercalation graphite cathodes offers the unique opportunity to simultaneously achieve high energy density and output power density. However, a critical challenge remains in the lack of proper anodes that match with graphite cathodes, particularly in sustainable electrolyte systems using abundant potassium. Here, a surface grafting approach utilizing multifunctional azobenzene sulfonic acid is reported, which transforms V2C MXene into a high-kinetics K+-intercalation anode (denoted ASA-V2C) for dual-ion energy storage devices. Importantly, the grafted azobenzene sulfonic acid offers extra K+-storage centers and fast K+-hopping sites, while concurrently acting as a buffer between V2C layers to mitigate the structural distortion during K+ intercalation/de-intercalation. These functionalities enable the V2C electrode with significantly enhanced specific capacity (173.9 mAh g(-1) vs 121.5 mAh g(-1) at 0.05 A g(-1)), rate capability (43.1% vs 12.0% at 20 A g(-1)), and cycling stability (80.3% vs 45.2% after 900 cycles at 0.05 A g(-1)). When coupled with an anion-intercalation graphite cathode, the ASA-V2C anode demonstrates its potential in a dual-ion energy storage device. Notably, the device depicts a maximum energy density of 175 Wh kg(-1) and a supercapacitor-comparable power density of 6.5 kW kg(-1), outperforming recently reported Li+-, Na+-, and K+-based dual-ion devices.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10405 - Electrochemistry (dry cells, batteries, fuel cells, corrosion metals, electrolysis)
Návaznosti výsledku
Projekt
<a href="/cs/project/TH71020004" target="_blank" >TH71020004: Syntéza a charakterizace nových 2D hybridních materiálů pro superkondenzátory</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2023
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Advanced Energy Materials
ISSN
1614-6832
e-ISSN
1614-6840
Svazek periodika
14
Číslo periodika v rámci svazku
3
Stát vydavatele periodika
DE - Spolková republika Německo
Počet stran výsledku
9
Strana od-do
„2302961“-„“
Kód UT WoS článku
001123433300001
EID výsledku v databázi Scopus
2-s2.0-85178157288