Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Advanced mid-infrared plasmonic waveguides for on-chip integrated photonics

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26620%2F23%3APU150805" target="_blank" >RIV/00216305:26620/23:PU150805 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://opg.optica.org/prj/fulltext.cfm?uri=prj-11-10-1694&id=540366" target="_blank" >https://opg.optica.org/prj/fulltext.cfm?uri=prj-11-10-1694&id=540366</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1364/PRJ.495729" target="_blank" >10.1364/PRJ.495729</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Advanced mid-infrared plasmonic waveguides for on-chip integrated photonics

  • Popis výsledku v původním jazyce

    Long-wave infrared (LWIR, 8–14 μm) photonics is a rapidly growing research field within the mid-IR with applications in molecular spectroscopy and optical free-space communication. LWIR applications are often addressed using rather bulky tabletop-sized free-space optical systems, preventing advanced photonic applications, such as rapid-time-scale experiments. Here, device miniaturization into photonic integrated circuits (PICs) with maintained optical capabilities is key to revolutionize mid-IR photonics. Subwavelength mode confinement in plasmonic structures enabled such miniaturization approaches in the visible-to-near-IR spectral range. However, adopting plasmonics for the LWIR needs suitable low-loss and -dispersion materials with compatible integration strategies to existing mid-IR technology. In this paper, we further unlock the field of LWIR/mid-IR PICs by combining photolithographic patterning of organic polymers with dielectric-loaded surface plasmon polariton (DLSPP) waveguides. In particular, polyethylene shows favorable optical properties, including low refractive index and broad transparency between ∼2 μm and 200 μm. We investigate the whole value chain, including design, fabrication, and characterization of polyethylene-based DLSPP waveguides and demonstrate their first-time plasmonic operation and mode guiding capabilities along S-bend structures. Low bending losses of ∼1.3 dB and straight-section propagation lengths of ∼1 mm, pave the way for unprecedented complex on-chip mid-IR photonic devices. Moreover, DLSPPs allow full control of the mode parameters (propagation length and guiding capabilities) for precisely addressing advanced sensing and telecommunication applications with chip-scale devices.

  • Název v anglickém jazyce

    Advanced mid-infrared plasmonic waveguides for on-chip integrated photonics

  • Popis výsledku anglicky

    Long-wave infrared (LWIR, 8–14 μm) photonics is a rapidly growing research field within the mid-IR with applications in molecular spectroscopy and optical free-space communication. LWIR applications are often addressed using rather bulky tabletop-sized free-space optical systems, preventing advanced photonic applications, such as rapid-time-scale experiments. Here, device miniaturization into photonic integrated circuits (PICs) with maintained optical capabilities is key to revolutionize mid-IR photonics. Subwavelength mode confinement in plasmonic structures enabled such miniaturization approaches in the visible-to-near-IR spectral range. However, adopting plasmonics for the LWIR needs suitable low-loss and -dispersion materials with compatible integration strategies to existing mid-IR technology. In this paper, we further unlock the field of LWIR/mid-IR PICs by combining photolithographic patterning of organic polymers with dielectric-loaded surface plasmon polariton (DLSPP) waveguides. In particular, polyethylene shows favorable optical properties, including low refractive index and broad transparency between ∼2 μm and 200 μm. We investigate the whole value chain, including design, fabrication, and characterization of polyethylene-based DLSPP waveguides and demonstrate their first-time plasmonic operation and mode guiding capabilities along S-bend structures. Low bending losses of ∼1.3 dB and straight-section propagation lengths of ∼1 mm, pave the way for unprecedented complex on-chip mid-IR photonic devices. Moreover, DLSPPs allow full control of the mode parameters (propagation length and guiding capabilities) for precisely addressing advanced sensing and telecommunication applications with chip-scale devices.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    10306 - Optics (including laser optics and quantum optics)

Návaznosti výsledku

  • Projekt

    <a href="/cs/project/LM2018110" target="_blank" >LM2018110: Výzkumná infrastruktura CzechNanoLab</a><br>

  • Návaznosti

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Ostatní

  • Rok uplatnění

    2023

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Photonics Research

  • ISSN

    2327-9125

  • e-ISSN

  • Svazek periodika

    11

  • Číslo periodika v rámci svazku

    10

  • Stát vydavatele periodika

    US - Spojené státy americké

  • Počet stran výsledku

    9

  • Strana od-do

    1694-1702

  • Kód UT WoS článku

    001108685800010

  • EID výsledku v databázi Scopus

    2-s2.0-85173908585