Sintering activation energies of anisotropic layered and particle alumina/zirconia-based composites and their mechanical response
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26620%2F24%3APU151252" target="_blank" >RIV/00216305:26620/24:PU151252 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/68081723:_____/24:00597780
Výsledek na webu
<a href="https://www.sciencedirect.com/science/article/pii/S0272884224016602?via%3Dihub" target="_blank" >https://www.sciencedirect.com/science/article/pii/S0272884224016602?via%3Dihub</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.ceramint.2024.04.263" target="_blank" >10.1016/j.ceramint.2024.04.263</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Sintering activation energies of anisotropic layered and particle alumina/zirconia-based composites and their mechanical response
Popis výsledku v původním jazyce
Information on the sintering activation energy is currently focused on evaluation of single-phase ceramic systems. This work shows the results of high-temperature dilatometry measurements of layered and particle composites based on alumina and zirconia. Layered composites with different layer thickness ratios and particle composites with variable composition in the entire concentration range were prepared by electrophoretic deposition allowing manufacturing composites with precious design and strongly bonded interfaces. The phenomena observed during the high-temperature dilatometry measurements are discussed, and the data were used to calculate the sintering activation energies of composites using the modified Master Sintering Curve concept. By covering a wide range of composite designs, it was possible to determine differences in activation energies and to show their dependence on the direction in the case of laminate composites given by the directionally dependent sintering behaviour. Sintering activation energies of layered composites were always higher than for monoliths due to constrained sintering showing maximum sintering activation energies at lower volumes of zirconia in the layers for longitudinal and transversal orientation of the samples. A similar trend was identified in particle composites due to slowed down alumina densification by the pinning effect. Additionally, mechanical properties represented by Vickers hardness and indentation elastic modulus were related to the microstructure developed during sintering. The effects of interconnectivity of phases present in the composites together with other parameters of the microstructure were described.
Název v anglickém jazyce
Sintering activation energies of anisotropic layered and particle alumina/zirconia-based composites and their mechanical response
Popis výsledku anglicky
Information on the sintering activation energy is currently focused on evaluation of single-phase ceramic systems. This work shows the results of high-temperature dilatometry measurements of layered and particle composites based on alumina and zirconia. Layered composites with different layer thickness ratios and particle composites with variable composition in the entire concentration range were prepared by electrophoretic deposition allowing manufacturing composites with precious design and strongly bonded interfaces. The phenomena observed during the high-temperature dilatometry measurements are discussed, and the data were used to calculate the sintering activation energies of composites using the modified Master Sintering Curve concept. By covering a wide range of composite designs, it was possible to determine differences in activation energies and to show their dependence on the direction in the case of laminate composites given by the directionally dependent sintering behaviour. Sintering activation energies of layered composites were always higher than for monoliths due to constrained sintering showing maximum sintering activation energies at lower volumes of zirconia in the layers for longitudinal and transversal orientation of the samples. A similar trend was identified in particle composites due to slowed down alumina densification by the pinning effect. Additionally, mechanical properties represented by Vickers hardness and indentation elastic modulus were related to the microstructure developed during sintering. The effects of interconnectivity of phases present in the composites together with other parameters of the microstructure were described.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
20504 - Ceramics
Návaznosti výsledku
Projekt
<a href="/cs/project/EH22_008%2F0004634" target="_blank" >EH22_008/0004634: Strojní inženýrství biologických a bioinspirovaných systémů</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2024
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
CERAMICS INTERNATIONAL
ISSN
0272-8842
e-ISSN
1873-3956
Svazek periodika
50
Číslo periodika v rámci svazku
19
Stát vydavatele periodika
GB - Spojené království Velké Británie a Severního Irska
Počet stran výsledku
11
Strana od-do
37430-37440
Kód UT WoS článku
001295772400001
EID výsledku v databázi Scopus
2-s2.0-85191540373