Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Two-phase model for inverse Hall-Petch effect in nanocrystalline thin film: Atomistic simulation study

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26620%2F24%3APU152471" target="_blank" >RIV/00216305:26620/24:PU152471 - isvavai.cz</a>

  • Nalezeny alternativní kódy

    RIV/68081723:_____/24:00586888 RIV/00216208:11320/24:10484637

  • Výsledek na webu

    <a href="https://www.sciencedirect.com/science/article/pii/S135964542400435X?via%3Dihub" target="_blank" >https://www.sciencedirect.com/science/article/pii/S135964542400435X?via%3Dihub</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1016/j.actamat.2024.120084" target="_blank" >10.1016/j.actamat.2024.120084</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Two-phase model for inverse Hall-Petch effect in nanocrystalline thin film: Atomistic simulation study

  • Popis výsledku v původním jazyce

    This work presents two methods to improve the understanding of the mechanical behavior of nanocrystalline thin films. Firstly, a simple two-phase model is proposed to explain the inverse Hall-Petch effect. The model suggests that the nanocrystalline material consists of the grain -boundary and the grain interior with different mechanical properties. Secondly, a computational method is developed to create more realistic grain boundaries in simulations of polycrystals. Traditionally created grain boundaries by Voronoi tessellation are too dense and do not accurately reflect the reality and the experimental results. The strength of the nanocrystalline aluminum thin film is simulated using molecular dynamics. The grain size dependence of the elastic modulus, ultimate tensile stress, and engineering yield strength is demonstrated. The experimental values of modulus and strength are approximately 6 times smaller probably due to the presence of porosity in the real sample. An approach is developed to introduce porosity in the simulated samples at the grain boundaries and in the grain interior to reduce this discrepancy. The modeled value of modulus for a grain size of 40 nm without porosity is 67 GPa, whereas, with 50% grain -boundary porosity and 20% intra-granular porosity it is 30 GPa. For the ultimate tensile strength, we get 3 GPa and 1.4 GPa for samples without porosity and with porosity, respectively. The simulated values of modulus with porosity are still 4 times higher and the values of strength are about 2 times higher than the experimental ones. The amount of porosity in our method can be adjusted to fit the experimental values; however, high values of porosity cause the mechanical instability of the simulated samples.

  • Název v anglickém jazyce

    Two-phase model for inverse Hall-Petch effect in nanocrystalline thin film: Atomistic simulation study

  • Popis výsledku anglicky

    This work presents two methods to improve the understanding of the mechanical behavior of nanocrystalline thin films. Firstly, a simple two-phase model is proposed to explain the inverse Hall-Petch effect. The model suggests that the nanocrystalline material consists of the grain -boundary and the grain interior with different mechanical properties. Secondly, a computational method is developed to create more realistic grain boundaries in simulations of polycrystals. Traditionally created grain boundaries by Voronoi tessellation are too dense and do not accurately reflect the reality and the experimental results. The strength of the nanocrystalline aluminum thin film is simulated using molecular dynamics. The grain size dependence of the elastic modulus, ultimate tensile stress, and engineering yield strength is demonstrated. The experimental values of modulus and strength are approximately 6 times smaller probably due to the presence of porosity in the real sample. An approach is developed to introduce porosity in the simulated samples at the grain boundaries and in the grain interior to reduce this discrepancy. The modeled value of modulus for a grain size of 40 nm without porosity is 67 GPa, whereas, with 50% grain -boundary porosity and 20% intra-granular porosity it is 30 GPa. For the ultimate tensile strength, we get 3 GPa and 1.4 GPa for samples without porosity and with porosity, respectively. The simulated values of modulus with porosity are still 4 times higher and the values of strength are about 2 times higher than the experimental ones. The amount of porosity in our method can be adjusted to fit the experimental values; however, high values of porosity cause the mechanical instability of the simulated samples.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    10302 - Condensed matter physics (including formerly solid state physics, supercond.)

Návaznosti výsledku

  • Projekt

  • Návaznosti

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Ostatní

  • Rok uplatnění

    2024

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    ACTA MATERIALIA

  • ISSN

    1359-6454

  • e-ISSN

    1873-2453

  • Svazek periodika

    276

  • Číslo periodika v rámci svazku

    120084

  • Stát vydavatele periodika

    US - Spojené státy americké

  • Počet stran výsledku

    10

  • Strana od-do

    „“-„“

  • Kód UT WoS článku

    001255515100001

  • EID výsledku v databázi Scopus

    2-s2.0-85195677607