Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Scaffold microstructure evolution via freeze-casting and hydrothermal phase transformation of calcium phosphate

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26620%2F24%3APU155966" target="_blank" >RIV/00216305:26620/24:PU155966 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://ceramics.onlinelibrary.wiley.com/doi/10.1111/jace.20053" target="_blank" >https://ceramics.onlinelibrary.wiley.com/doi/10.1111/jace.20053</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1111/jace.20053" target="_blank" >10.1111/jace.20053</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Scaffold microstructure evolution via freeze-casting and hydrothermal phase transformation of calcium phosphate

  • Popis výsledku v původním jazyce

    Extensive research efforts have been focused on customizing the microstructure, macrostructure, and phase composition of calcium phosphate for enhanced biocompatibility and bioactivity in scaffolds for bone substitutes. Despite significant progress, achieving precise phase composition and microstructure remains a challenge, primarily due to the necessity of scaffold sintering. This study addresses the challenges in developing customized patient-specific bone substitutes by proposing a sequential approach that reduces processing steps while providing control over the phase and morphology of the scaffolds' structure. The methodology utilizes freeze-casting and sintering for highly porous the scaffolds' preparation, followed by hydrothermal treatment to modify the microstructure. The introduction of CaCO3 induces a phase transformation of tricalcium phosphate, increasing the hydroxyapatite content, while the overall macrostructure retains the characteristics of freeze-casting. The surface morphology undergoes a transition from equiaxial grains to whiskers-like structures and hexagonal rods, impacting compressive strength. Following hydrothermal treatment, the formation of whiskers-like hydroxyapatite grains leads to a notable strength increase from 2.8 to 5.7 MPa. Remarkably, the scaffolds undergo nearly complete phase transformation, shifting from 100% tricalcium phosphate to 99% hydroxyapatite, all while conserving the macrostructure. Scaffolds with enhanced porosity and altered surface morphologies were created through freeze-casting, sintering, and subsequent hydrothermal treatment. The modified scaffolds maintained their overall macrostructure, displaying high porosity (>= 60%), diverse hydroxyapatite phase ratios (0-99%), and a compressive strength of 5.7 MPa. This study introduces a novel approach employing hydrothermal treatment for microstructural and phase customization of sintered scaffolds. image

  • Název v anglickém jazyce

    Scaffold microstructure evolution via freeze-casting and hydrothermal phase transformation of calcium phosphate

  • Popis výsledku anglicky

    Extensive research efforts have been focused on customizing the microstructure, macrostructure, and phase composition of calcium phosphate for enhanced biocompatibility and bioactivity in scaffolds for bone substitutes. Despite significant progress, achieving precise phase composition and microstructure remains a challenge, primarily due to the necessity of scaffold sintering. This study addresses the challenges in developing customized patient-specific bone substitutes by proposing a sequential approach that reduces processing steps while providing control over the phase and morphology of the scaffolds' structure. The methodology utilizes freeze-casting and sintering for highly porous the scaffolds' preparation, followed by hydrothermal treatment to modify the microstructure. The introduction of CaCO3 induces a phase transformation of tricalcium phosphate, increasing the hydroxyapatite content, while the overall macrostructure retains the characteristics of freeze-casting. The surface morphology undergoes a transition from equiaxial grains to whiskers-like structures and hexagonal rods, impacting compressive strength. Following hydrothermal treatment, the formation of whiskers-like hydroxyapatite grains leads to a notable strength increase from 2.8 to 5.7 MPa. Remarkably, the scaffolds undergo nearly complete phase transformation, shifting from 100% tricalcium phosphate to 99% hydroxyapatite, all while conserving the macrostructure. Scaffolds with enhanced porosity and altered surface morphologies were created through freeze-casting, sintering, and subsequent hydrothermal treatment. The modified scaffolds maintained their overall macrostructure, displaying high porosity (>= 60%), diverse hydroxyapatite phase ratios (0-99%), and a compressive strength of 5.7 MPa. This study introduces a novel approach employing hydrothermal treatment for microstructural and phase customization of sintered scaffolds. image

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    20504 - Ceramics

Návaznosti výsledku

  • Projekt

    Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.

  • Návaznosti

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Ostatní

  • Rok uplatnění

    2024

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    JOURNAL OF THE AMERICAN CERAMIC SOCIETY

  • ISSN

    0002-7820

  • e-ISSN

    1551-2916

  • Svazek periodika

    107

  • Číslo periodika v rámci svazku

    12

  • Stát vydavatele periodika

    US - Spojené státy americké

  • Počet stran výsledku

    13

  • Strana od-do

    7994-8006

  • Kód UT WoS článku

    001285647400001

  • EID výsledku v databázi Scopus

    2-s2.0-85200509561