Scaffold microstructure evolution via freeze-casting and hydrothermal phase transformation of calcium phosphate
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26620%2F24%3APU155966" target="_blank" >RIV/00216305:26620/24:PU155966 - isvavai.cz</a>
Výsledek na webu
<a href="https://ceramics.onlinelibrary.wiley.com/doi/10.1111/jace.20053" target="_blank" >https://ceramics.onlinelibrary.wiley.com/doi/10.1111/jace.20053</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1111/jace.20053" target="_blank" >10.1111/jace.20053</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Scaffold microstructure evolution via freeze-casting and hydrothermal phase transformation of calcium phosphate
Popis výsledku v původním jazyce
Extensive research efforts have been focused on customizing the microstructure, macrostructure, and phase composition of calcium phosphate for enhanced biocompatibility and bioactivity in scaffolds for bone substitutes. Despite significant progress, achieving precise phase composition and microstructure remains a challenge, primarily due to the necessity of scaffold sintering. This study addresses the challenges in developing customized patient-specific bone substitutes by proposing a sequential approach that reduces processing steps while providing control over the phase and morphology of the scaffolds' structure. The methodology utilizes freeze-casting and sintering for highly porous the scaffolds' preparation, followed by hydrothermal treatment to modify the microstructure. The introduction of CaCO3 induces a phase transformation of tricalcium phosphate, increasing the hydroxyapatite content, while the overall macrostructure retains the characteristics of freeze-casting. The surface morphology undergoes a transition from equiaxial grains to whiskers-like structures and hexagonal rods, impacting compressive strength. Following hydrothermal treatment, the formation of whiskers-like hydroxyapatite grains leads to a notable strength increase from 2.8 to 5.7 MPa. Remarkably, the scaffolds undergo nearly complete phase transformation, shifting from 100% tricalcium phosphate to 99% hydroxyapatite, all while conserving the macrostructure. Scaffolds with enhanced porosity and altered surface morphologies were created through freeze-casting, sintering, and subsequent hydrothermal treatment. The modified scaffolds maintained their overall macrostructure, displaying high porosity (>= 60%), diverse hydroxyapatite phase ratios (0-99%), and a compressive strength of 5.7 MPa. This study introduces a novel approach employing hydrothermal treatment for microstructural and phase customization of sintered scaffolds. image
Název v anglickém jazyce
Scaffold microstructure evolution via freeze-casting and hydrothermal phase transformation of calcium phosphate
Popis výsledku anglicky
Extensive research efforts have been focused on customizing the microstructure, macrostructure, and phase composition of calcium phosphate for enhanced biocompatibility and bioactivity in scaffolds for bone substitutes. Despite significant progress, achieving precise phase composition and microstructure remains a challenge, primarily due to the necessity of scaffold sintering. This study addresses the challenges in developing customized patient-specific bone substitutes by proposing a sequential approach that reduces processing steps while providing control over the phase and morphology of the scaffolds' structure. The methodology utilizes freeze-casting and sintering for highly porous the scaffolds' preparation, followed by hydrothermal treatment to modify the microstructure. The introduction of CaCO3 induces a phase transformation of tricalcium phosphate, increasing the hydroxyapatite content, while the overall macrostructure retains the characteristics of freeze-casting. The surface morphology undergoes a transition from equiaxial grains to whiskers-like structures and hexagonal rods, impacting compressive strength. Following hydrothermal treatment, the formation of whiskers-like hydroxyapatite grains leads to a notable strength increase from 2.8 to 5.7 MPa. Remarkably, the scaffolds undergo nearly complete phase transformation, shifting from 100% tricalcium phosphate to 99% hydroxyapatite, all while conserving the macrostructure. Scaffolds with enhanced porosity and altered surface morphologies were created through freeze-casting, sintering, and subsequent hydrothermal treatment. The modified scaffolds maintained their overall macrostructure, displaying high porosity (>= 60%), diverse hydroxyapatite phase ratios (0-99%), and a compressive strength of 5.7 MPa. This study introduces a novel approach employing hydrothermal treatment for microstructural and phase customization of sintered scaffolds. image
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
20504 - Ceramics
Návaznosti výsledku
Projekt
Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2024
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
JOURNAL OF THE AMERICAN CERAMIC SOCIETY
ISSN
0002-7820
e-ISSN
1551-2916
Svazek periodika
107
Číslo periodika v rámci svazku
12
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
13
Strana od-do
7994-8006
Kód UT WoS článku
001285647400001
EID výsledku v databázi Scopus
2-s2.0-85200509561