4D-STEM in an FIB-SEM: A Proper Tool to Characterize Perovskite Single-Photon Emitters and Solar Cells
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26620%2F25%3APU156325" target="_blank" >RIV/00216305:26620/25:PU156325 - isvavai.cz</a>
Výsledek na webu
<a href="https://pubs.acs.org/doi/10.1021/acs.jpcc.4c08042" target="_blank" >https://pubs.acs.org/doi/10.1021/acs.jpcc.4c08042</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1021/acs.jpcc.4c08042" target="_blank" >10.1021/acs.jpcc.4c08042</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
4D-STEM in an FIB-SEM: A Proper Tool to Characterize Perovskite Single-Photon Emitters and Solar Cells
Popis výsledku v původním jazyce
Four-dimensional scanning transmission electron microscopy (4D-STEM) is a characterization technique that allows high-resolution imaging of thin samples while providing structural and crystallographic information. We have developed a 4D-STEM solution for scanning electron microscopes, enabling lamella fabrication and analysis without exposing the lamella to air. This technique has been used to analyze emerging materials, including low-dimensional lead halide perovskites and perovskite solar cells. We resolved individual CsPbBr3 nanocrystals, determined their lattice constant, and mapped their crystallographic orientation, locating well-ordered superlattice ensembles for single-photon emission. In perovskite solar cells, we observed a nondegenerate tetragonal MAPbI3 photoactive layer and documented the amorphization and subsequent degradation of the MA3Bi2I9 photoactive layer when exposed to air. Our findings facilitate the identification and characterization of lead halide perovskite nanocrystal ensembles and perovskite photoactive layers, thereby reducing the time required for these processes. This efficiency is generally valuable for large-scale production and quality control of materials manufactured on an industrial scale.
Název v anglickém jazyce
4D-STEM in an FIB-SEM: A Proper Tool to Characterize Perovskite Single-Photon Emitters and Solar Cells
Popis výsledku anglicky
Four-dimensional scanning transmission electron microscopy (4D-STEM) is a characterization technique that allows high-resolution imaging of thin samples while providing structural and crystallographic information. We have developed a 4D-STEM solution for scanning electron microscopes, enabling lamella fabrication and analysis without exposing the lamella to air. This technique has been used to analyze emerging materials, including low-dimensional lead halide perovskites and perovskite solar cells. We resolved individual CsPbBr3 nanocrystals, determined their lattice constant, and mapped their crystallographic orientation, locating well-ordered superlattice ensembles for single-photon emission. In perovskite solar cells, we observed a nondegenerate tetragonal MAPbI3 photoactive layer and documented the amorphization and subsequent degradation of the MA3Bi2I9 photoactive layer when exposed to air. Our findings facilitate the identification and characterization of lead halide perovskite nanocrystal ensembles and perovskite photoactive layers, thereby reducing the time required for these processes. This efficiency is generally valuable for large-scale production and quality control of materials manufactured on an industrial scale.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10403 - Physical chemistry
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2025
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Journal of Physical Chemistry C (web)
ISSN
1932-7447
e-ISSN
1932-7455
Svazek periodika
129
Číslo periodika v rámci svazku
7
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
8
Strana od-do
3905-3912
Kód UT WoS článku
001415250000001
EID výsledku v databázi Scopus
2-s2.0-85217114816