Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Study of the dielectric properties, relaxation mechanisms and electrical conduction mechanisms of epoxy/ α-Iron oxide nanocomposites

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26620%2F25%3APU156414" target="_blank" >RIV/00216305:26620/25:PU156414 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://www.sciencedirect.com/science/article/pii/S0925838825013647?via%3Dihub" target="_blank" >https://www.sciencedirect.com/science/article/pii/S0925838825013647?via%3Dihub</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1016/j.jallcom.2025.179806" target="_blank" >10.1016/j.jallcom.2025.179806</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Study of the dielectric properties, relaxation mechanisms and electrical conduction mechanisms of epoxy/ α-Iron oxide nanocomposites

  • Popis výsledku v původním jazyce

    In this study, the dielectric properties, relaxation mechanisms, and electrical conduction mechanisms of epoxy resin-based nanocomposites were enhanced using ferric oxide (alpha - Fe2O3) nanoparticles. Composites containing 3-12 wt% nanoparticles were analyzed for relative permittivity, impedance, modulus, alternating conductivity, activation energy, and hopping energy across a temperature range of 30-150 degrees C and frequencies of 10- 2- 106 Hz using dielectric relaxation spectroscopy. Nanoparticle dispersion and structural formation within the epoxy matrix were confirmed using scanning electron microscopy coupled with energy-dispersive X-ray spectroscopy and X-ray diffraction. The results revealed that the electrical permittivity and impedance increased with temperature, whereas the conductivity, modulus, and activation energy decreased. The relaxation behavior was analyzed using the Havriliak-Negami model via WinFit software. Distinct conduction mechanisms were observed at lower filler concentrations (3-6 wt%). %) exhibited modified Non-Overlapping Small Polaron Tunneling and modified Correlated Barrier Hopping, whereas higher concentrations (9-12 wt%) transitioned to Quantum Mechanical Tunneling and modified Correlated Barrier Hopping. The results showed that the relative permittivity of the epoxy samples increased with increasing temperature. Specifically, the relative permittivity of the epoxy/ 3 wt% sample at room temperature was 3 and it increased to 12 at 150 degrees C. Additionally, a slight increase in AC conductivity was observed owing to thermal activation, with AC conductivity values increasing from 10- 8 to10-7 S/cm within the specified temperature range for the epoxy/ 12 wt% sample. Furthermore, a gradual decrease in impedance was noted as the temperature increased, with values decreasing from 1011 to109 ohm for the epoxy/ 3 wt% sample. Analysis of the Cole-Cole plots revealed a variation in the relaxation time that depended on the filler concentra

  • Název v anglickém jazyce

    Study of the dielectric properties, relaxation mechanisms and electrical conduction mechanisms of epoxy/ α-Iron oxide nanocomposites

  • Popis výsledku anglicky

    In this study, the dielectric properties, relaxation mechanisms, and electrical conduction mechanisms of epoxy resin-based nanocomposites were enhanced using ferric oxide (alpha - Fe2O3) nanoparticles. Composites containing 3-12 wt% nanoparticles were analyzed for relative permittivity, impedance, modulus, alternating conductivity, activation energy, and hopping energy across a temperature range of 30-150 degrees C and frequencies of 10- 2- 106 Hz using dielectric relaxation spectroscopy. Nanoparticle dispersion and structural formation within the epoxy matrix were confirmed using scanning electron microscopy coupled with energy-dispersive X-ray spectroscopy and X-ray diffraction. The results revealed that the electrical permittivity and impedance increased with temperature, whereas the conductivity, modulus, and activation energy decreased. The relaxation behavior was analyzed using the Havriliak-Negami model via WinFit software. Distinct conduction mechanisms were observed at lower filler concentrations (3-6 wt%). %) exhibited modified Non-Overlapping Small Polaron Tunneling and modified Correlated Barrier Hopping, whereas higher concentrations (9-12 wt%) transitioned to Quantum Mechanical Tunneling and modified Correlated Barrier Hopping. The results showed that the relative permittivity of the epoxy samples increased with increasing temperature. Specifically, the relative permittivity of the epoxy/ 3 wt% sample at room temperature was 3 and it increased to 12 at 150 degrees C. Additionally, a slight increase in AC conductivity was observed owing to thermal activation, with AC conductivity values increasing from 10- 8 to10-7 S/cm within the specified temperature range for the epoxy/ 12 wt% sample. Furthermore, a gradual decrease in impedance was noted as the temperature increased, with values decreasing from 1011 to109 ohm for the epoxy/ 3 wt% sample. Analysis of the Cole-Cole plots revealed a variation in the relaxation time that depended on the filler concentra

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    10400 - Chemical sciences

Návaznosti výsledku

  • Projekt

    <a href="/cs/project/LM2023051" target="_blank" >LM2023051: Výzkumná infrastruktura CzechNanoLab</a><br>

  • Návaznosti

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>S - Specificky vyzkum na vysokych skolach

Ostatní

  • Rok uplatnění

    2025

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    JOURNAL OF ALLOYS AND COMPOUNDS

  • ISSN

    0925-8388

  • e-ISSN

    1873-4669

  • Svazek periodika

    1022

  • Číslo periodika v rámci svazku

    179806

  • Stát vydavatele periodika

    CH - Švýcarská konfederace

  • Počet stran výsledku

    18

  • Strana od-do

    „“-„“

  • Kód UT WoS článku

    001457982300001

  • EID výsledku v databázi Scopus

    2-s2.0-105000947568