Proposal of neural network model for neurocognitive rehabilitation and its comparison with fuzzy expert system model
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00843989%3A_____%2F23%3AE0110454" target="_blank" >RIV/00843989:_____/23:E0110454 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/61988987:17310/23:A2402LZK
Výsledek na webu
<a href="https://bmcmedinformdecismak.biomedcentral.com/articles/10.1186/s12911-023-02321-1" target="_blank" >https://bmcmedinformdecismak.biomedcentral.com/articles/10.1186/s12911-023-02321-1</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1186/s12911-023-02321-1" target="_blank" >10.1186/s12911-023-02321-1</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Proposal of neural network model for neurocognitive rehabilitation and its comparison with fuzzy expert system model
Popis výsledku v původním jazyce
This article focuses on the development of algorithms for a smart neurorehabilitation system, whose core is made up of artificial neural networks. The authors of the article have proposed a completely unique transfer of ACE-R results to the CHC model. This unique approach allows for the saturation of the CHC model domains according to modified ACE-R factor analysis. The outputs of the proposed algorithm thus enable the automatic creation of a personalized and optimized neurorehabilitation plan for individual patients to train their cognitive functions. A set of tasks in 6 levels of difficulty (level 1 to level 6) was designed for each of the nine CHC model domains. For each patient, the results of the ACE-R screening helped deter-mine the specific CHC domains to be rehabilitated, as well as the initial gaming level for rehabilitation in each domain. The proposed artificial neural network algorithm was adapted to real data from 703 patients. Experimental outputs were compared to the outputs of the initially designed fuzzy expert system, which was trained on the same real data, and all outputs from both systems were statistically evaluated against expert conclusions that were available. It is evident from the conducted experimental study that the smart neurorehabilitation system using artificial neural networks achieved significantly better results than the neurorehabilitation system whose core is a fuzzy expert system. Both algorithms are implemented into a comprehensive neurorehabilitation portal (Eddie), which was supported by a research project from the Technology Agency of the Czech Republic.
Název v anglickém jazyce
Proposal of neural network model for neurocognitive rehabilitation and its comparison with fuzzy expert system model
Popis výsledku anglicky
This article focuses on the development of algorithms for a smart neurorehabilitation system, whose core is made up of artificial neural networks. The authors of the article have proposed a completely unique transfer of ACE-R results to the CHC model. This unique approach allows for the saturation of the CHC model domains according to modified ACE-R factor analysis. The outputs of the proposed algorithm thus enable the automatic creation of a personalized and optimized neurorehabilitation plan for individual patients to train their cognitive functions. A set of tasks in 6 levels of difficulty (level 1 to level 6) was designed for each of the nine CHC model domains. For each patient, the results of the ACE-R screening helped deter-mine the specific CHC domains to be rehabilitated, as well as the initial gaming level for rehabilitation in each domain. The proposed artificial neural network algorithm was adapted to real data from 703 patients. Experimental outputs were compared to the outputs of the initially designed fuzzy expert system, which was trained on the same real data, and all outputs from both systems were statistically evaluated against expert conclusions that were available. It is evident from the conducted experimental study that the smart neurorehabilitation system using artificial neural networks achieved significantly better results than the neurorehabilitation system whose core is a fuzzy expert system. Both algorithms are implemented into a comprehensive neurorehabilitation portal (Eddie), which was supported by a research project from the Technology Agency of the Czech Republic.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10200 - Computer and information sciences
Návaznosti výsledku
Projekt
<a href="/cs/project/TL02000313" target="_blank" >TL02000313: Chytrý neuro-rehabilitační systém pro pacienty se získaným poškozením mozku v časných stádiích léčby</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2023
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
BMC medical informatics and decision making
ISSN
1472-6947
e-ISSN
1472-6947
Svazek periodika
23
Číslo periodika v rámci svazku
article 221
Stát vydavatele periodika
GB - Spojené království Velké Británie a Severního Irska
Počet stran výsledku
14
Strana od-do
1-14
Kód UT WoS článku
001086710400003
EID výsledku v databázi Scopus
2-s2.0-85174299938