An AI Factory Digital Twin Deployed Within a High Performance Edge Architecture
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F02673975%3A_____%2F23%3AN0000002" target="_blank" >RIV/02673975:_____/23:N0000002 - isvavai.cz</a>
Výsledek na webu
<a href="https://ieeexplore.ieee.org/document/10355613" target="_blank" >https://ieeexplore.ieee.org/document/10355613</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1109/ICNP59255.2023.10355613" target="_blank" >10.1109/ICNP59255.2023.10355613</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
An AI Factory Digital Twin Deployed Within a High Performance Edge Architecture
Popis výsledku v původním jazyce
The exponential proliferation of big data and computation-intensive tasks, such as Artificial Intelligence (AI) applications in factories, poses a significant challenge for the current datacenter-focused technological architecture. The ”Big data pRocessing and Artificial Intelligence at the Network Edge” (BRAINE) project addresses this problem by introducing an innovative system architecture designed explicitly for compute intensive edge deployments. BRAINE focuses on decentralizing the computation tasks, enabling a significant reduction in latency, and optimizing the placement of applications within a cloud-edge continuum to ensure optimal operational efficiency. This paper presents the design, implementation, and testing of our novel system architecture in the context of an AI digital twin for factory robotics. Our empirical results indicate substantial improvements in performance metrics such as processing speed and latency compared to traditional architectures and approaches.
Název v anglickém jazyce
An AI Factory Digital Twin Deployed Within a High Performance Edge Architecture
Popis výsledku anglicky
The exponential proliferation of big data and computation-intensive tasks, such as Artificial Intelligence (AI) applications in factories, poses a significant challenge for the current datacenter-focused technological architecture. The ”Big data pRocessing and Artificial Intelligence at the Network Edge” (BRAINE) project addresses this problem by introducing an innovative system architecture designed explicitly for compute intensive edge deployments. BRAINE focuses on decentralizing the computation tasks, enabling a significant reduction in latency, and optimizing the placement of applications within a cloud-edge continuum to ensure optimal operational efficiency. This paper presents the design, implementation, and testing of our novel system architecture in the context of an AI digital twin for factory robotics. Our empirical results indicate substantial improvements in performance metrics such as processing speed and latency compared to traditional architectures and approaches.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
20202 - Communication engineering and systems
Návaznosti výsledku
Projekt
<a href="/cs/project/8A20004" target="_blank" >8A20004: Big data pRocessing and Artificial Intelligence at the Network Edge</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2023
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
2023 IEEE 31st International Conference on Network Protocols (ICNP)
ISBN
979-8-3503-0322-3
ISSN
—
e-ISSN
2643-3303
Počet stran výsledku
6
Strana od-do
—
Název nakladatele
—
Místo vydání
—
Místo konání akce
Reykjavik, Iceland
Datum konání akce
10. 10. 2023
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—