A Predictive Likelihood Approach to Bayesian Averaging
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F04274644%3A_____%2F15%3A%230000041" target="_blank" >RIV/04274644:_____/15:#0000041 - isvavai.cz</a>
Výsledek na webu
<a href="http://dx.doi.org/10.11118/actaun201563041269" target="_blank" >http://dx.doi.org/10.11118/actaun201563041269</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.11118/actaun201563041269" target="_blank" >10.11118/actaun201563041269</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
A Predictive Likelihood Approach to Bayesian Averaging
Popis výsledku v původním jazyce
Multivariate time series forecasting is applied in a wide range of economic activities related to regional competitiveness and is the basis of almost all macroeconomic analysis. In this paper we combine multivariate density forecasts of GDP growth, inflation and real interest rates from four various models, two type of Bayesian vector autoregression (BVAR) models, a New Keynesian dynamic stochastic general equilibrium (DSGE) model of small open economy and DSGE-VAR model. The performance of models is identified using historical dates including domestic economy and foreign economy, which is represented by countries of the Eurozone. Because forecast accuracy of observed models are different, the weighting scheme based on the predictive likelihood, the trace of past MSE matrix, model ranks are used to combine the models. The equal-weight scheme is used as a simple combination scheme. The results show that optimally combined densities are comparable to the best individual models.
Název v anglickém jazyce
A Predictive Likelihood Approach to Bayesian Averaging
Popis výsledku anglicky
Multivariate time series forecasting is applied in a wide range of economic activities related to regional competitiveness and is the basis of almost all macroeconomic analysis. In this paper we combine multivariate density forecasts of GDP growth, inflation and real interest rates from four various models, two type of Bayesian vector autoregression (BVAR) models, a New Keynesian dynamic stochastic general equilibrium (DSGE) model of small open economy and DSGE-VAR model. The performance of models is identified using historical dates including domestic economy and foreign economy, which is represented by countries of the Eurozone. Because forecast accuracy of observed models are different, the weighting scheme based on the predictive likelihood, the trace of past MSE matrix, model ranks are used to combine the models. The equal-weight scheme is used as a simple combination scheme. The results show that optimally combined densities are comparable to the best individual models.
Klasifikace
Druh
J<sub>x</sub> - Nezařazeno - Článek v odborném periodiku (Jimp, Jsc a Jost)
CEP obor
AH - Ekonomie
OECD FORD obor
—
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2015
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Acta Univ Agric Silvic Mendel Brun
ISSN
1211-8516
e-ISSN
—
Svazek periodika
63
Číslo periodika v rámci svazku
4
Stát vydavatele periodika
CZ - Česká republika
Počet stran výsledku
8
Strana od-do
1269-1276
Kód UT WoS článku
—
EID výsledku v databázi Scopus
—