A Novel Optimized Link-State Routing Scheme with Greedy and Perimeter Forwarding Capability in Flying Ad Hoc Networks
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F04274644%3A_____%2F24%3A%230001103" target="_blank" >RIV/04274644:_____/24:#0001103 - isvavai.cz</a>
Výsledek na webu
<a href="https://www.mdpi.com/2227-7390/12/7/1016" target="_blank" >https://www.mdpi.com/2227-7390/12/7/1016</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.3390/math12071016" target="_blank" >10.3390/math12071016</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
A Novel Optimized Link-State Routing Scheme with Greedy and Perimeter Forwarding Capability in Flying Ad Hoc Networks
Popis výsledku v původním jazyce
A flying ad hoc network (FANET) is formed from a swarm of drones also known as unmanned aerial vehicles (UAVs) and is currently a popular research subject because of its ability to carry out complicated missions. However, the specific features of UAVs such as mobility, restricted energy, and dynamic topology have led to vital challenges for making reliable communications between drones, especially when designing routing methods. In this paper, a novel optimized link-state routing scheme with a greedy and perimeter forwarding capability called OLSR+GPSR is proposed in flying ad hoc networks. In OLSR+GPSR, optimized link-state routing (OLSR) and greedy perimeter stateless routing (GPSR) are merged together. The proposed method employs a fuzzy system to regulate the broadcast period of hello messages based on two inputs, namely the velocity of UAVs and position prediction error so that high-speed UAVs have a shorter hello broadcast period than low-speed UAVs. In OLSR+GPSR, unlike OLSR, MPR nodes are determined based on several metrics, especially neighbor degree, node stability (based on velocity, direction, and distance), the occupied buffer capacity, and residual energy. In the last step, the proposed method deletes two phases in OLSR, i.e., the TC message dissemination and the calculation of all routing paths to reduce routing overhead. Finally, OLSR+GPSR is run on an NS3 simulator, and its performance is evaluated in terms of delay, packet delivery ratio, throughput, and overhead in comparison with Gangopadhyay et al., P-OLSR, and OLSR-ETX. This evaluation shows the superiority of OLSR+GPSR
Název v anglickém jazyce
A Novel Optimized Link-State Routing Scheme with Greedy and Perimeter Forwarding Capability in Flying Ad Hoc Networks
Popis výsledku anglicky
A flying ad hoc network (FANET) is formed from a swarm of drones also known as unmanned aerial vehicles (UAVs) and is currently a popular research subject because of its ability to carry out complicated missions. However, the specific features of UAVs such as mobility, restricted energy, and dynamic topology have led to vital challenges for making reliable communications between drones, especially when designing routing methods. In this paper, a novel optimized link-state routing scheme with a greedy and perimeter forwarding capability called OLSR+GPSR is proposed in flying ad hoc networks. In OLSR+GPSR, optimized link-state routing (OLSR) and greedy perimeter stateless routing (GPSR) are merged together. The proposed method employs a fuzzy system to regulate the broadcast period of hello messages based on two inputs, namely the velocity of UAVs and position prediction error so that high-speed UAVs have a shorter hello broadcast period than low-speed UAVs. In OLSR+GPSR, unlike OLSR, MPR nodes are determined based on several metrics, especially neighbor degree, node stability (based on velocity, direction, and distance), the occupied buffer capacity, and residual energy. In the last step, the proposed method deletes two phases in OLSR, i.e., the TC message dissemination and the calculation of all routing paths to reduce routing overhead. Finally, OLSR+GPSR is run on an NS3 simulator, and its performance is evaluated in terms of delay, packet delivery ratio, throughput, and overhead in comparison with Gangopadhyay et al., P-OLSR, and OLSR-ETX. This evaluation shows the superiority of OLSR+GPSR
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2024
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Mathematics
ISSN
2227-7390
e-ISSN
—
Svazek periodika
12
Číslo periodika v rámci svazku
7
Stát vydavatele periodika
CH - Švýcarská konfederace
Počet stran výsledku
26
Strana od-do
1-26
Kód UT WoS článku
001201057000001
EID výsledku v databázi Scopus
2-s2.0-85190307909