Evaluation of UAV and Sentinel 2 images to estimate condition of hop (Humulus lupulus L.) plants
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F14864347%3A_____%2F21%3AN0000020" target="_blank" >RIV/14864347:_____/21:N0000020 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/60460709:41210/21:89862 RIV/60460709:41310/21:89862
Výsledek na webu
<a href="https://www.actahort.org/books/1328/1328_13.htm" target="_blank" >https://www.actahort.org/books/1328/1328_13.htm</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.17660/ActaHortic.2021.1328.13" target="_blank" >10.17660/ActaHortic.2021.1328.13</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Evaluation of UAV and Sentinel 2 images to estimate condition of hop (Humulus lupulus L.) plants
Popis výsledku v původním jazyce
Hop garden structure and crop condition can be monitored by many in situ methods but remote sensing offers possibilities of non-destructive monitoring. An organic hop garden with the cultivars ‘Žatecký červeňák’ and ‘Premiant’, and a conventional hop garden with the cultivars ‘Agnus’, ‘Premiant’ and ‘Sládek’ were selected for the experiment. In this study, unmanned aerial vehicle (UAV, eBee X senseFly UAV) equipped with Red Green Blue (RGB), Sensor Optimized for Drone Application (S.O.D.A.), and Sequoia cameras as well as Sentinel 2 satellite images were used for monitoring of hop plants throughout the whole vegetation season. UAV images were pre-processed in Pix4Dmapper software and orthophoto mosaics were derived. RGB vegetation indices and normalized difference vegetation index (NDVI) were calculated for each cultivar from UAV and satellite images. Resulted binary model of portion with green leaves and soil was extracted on the base of threshold value and served for detection of plants area. NDVI spectral index was calculated in order to describe plant condition during the growing season. The results showed significant differences in NDVI values among the conventional and organic hop gardens and among the cultivars as well and showed applicability of UAV and satellite images. Green area of the plants derived from the UAV images was influenced by design and flight parameters of this unmanned aerial system and crop structure.
Název v anglickém jazyce
Evaluation of UAV and Sentinel 2 images to estimate condition of hop (Humulus lupulus L.) plants
Popis výsledku anglicky
Hop garden structure and crop condition can be monitored by many in situ methods but remote sensing offers possibilities of non-destructive monitoring. An organic hop garden with the cultivars ‘Žatecký červeňák’ and ‘Premiant’, and a conventional hop garden with the cultivars ‘Agnus’, ‘Premiant’ and ‘Sládek’ were selected for the experiment. In this study, unmanned aerial vehicle (UAV, eBee X senseFly UAV) equipped with Red Green Blue (RGB), Sensor Optimized for Drone Application (S.O.D.A.), and Sequoia cameras as well as Sentinel 2 satellite images were used for monitoring of hop plants throughout the whole vegetation season. UAV images were pre-processed in Pix4Dmapper software and orthophoto mosaics were derived. RGB vegetation indices and normalized difference vegetation index (NDVI) were calculated for each cultivar from UAV and satellite images. Resulted binary model of portion with green leaves and soil was extracted on the base of threshold value and served for detection of plants area. NDVI spectral index was calculated in order to describe plant condition during the growing season. The results showed significant differences in NDVI values among the conventional and organic hop gardens and among the cultivars as well and showed applicability of UAV and satellite images. Green area of the plants derived from the UAV images was influenced by design and flight parameters of this unmanned aerial system and crop structure.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
40101 - Agriculture
Návaznosti výsledku
Projekt
<a href="/cs/project/QK1910170" target="_blank" >QK1910170: Zajištění dlouhodobé konkurenceschopnosti českého chmelařství na základě implementace principů precizního zemědělství a technologií smart farming</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2021
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Acta Horticulturae 1328
ISBN
978-94-62613-25-6
ISSN
0567-7572
e-ISSN
2406-6168
Počet stran výsledku
8
Strana od-do
95-102
Název nakladatele
International Society for Horticultural Science
Místo vydání
Leuven
Místo konání akce
Stuttgart
Datum konání akce
8. 3. 2021
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—