Performance Analysis of Convolutional Neural Networks with Different Window Functions for Automatic Modulation Classification
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F25547526%3A_____%2F22%3AN0000002" target="_blank" >RIV/25547526:_____/22:N0000002 - isvavai.cz</a>
Výsledek na webu
<a href="https://ieeexplore.ieee.org/document/9952750" target="_blank" >https://ieeexplore.ieee.org/document/9952750</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1109/ICTC55196.2022.9952750" target="_blank" >10.1109/ICTC55196.2022.9952750</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Performance Analysis of Convolutional Neural Networks with Different Window Functions for Automatic Modulation Classification
Popis výsledku v původním jazyce
Automatic modulation classification is one of the main tasks for developing information security and radio signal surveillance systems. It is also becoming increasingly significant for spectrum monitoring, management, and secure communications. Recently, deep learning models have been widely applied in many fields due to their outstanding feature extraction and classification accuracy. In this paper, the automatic modulation classification performance of several deep convolutional neural networks (CNN) is analyzed on the Fast Fourier Transform (FFT) based signal spectrum and the Short Time Fourier Transform (STFT) based signal spectrogram. By using ResNet18 and MobileNet cross-combined with FFT and STFT input data, the simulation shows that the STFT data provides a higher AMC accuracy than that of FFT data. On the same STFT data, the ResNet18 model outperforms three other models (SqueezeNet, GoogleNet, and MobileNet) in classifying 26 modulation types under the influence of five levels of fading noise with SNRs from −20 dB to +18 dB. Besides, the impact of different window functions in STFT is also investigated. Numerical results indicate that the considered window functions cause an insignificant difference in the AMC accuracy.
Název v anglickém jazyce
Performance Analysis of Convolutional Neural Networks with Different Window Functions for Automatic Modulation Classification
Popis výsledku anglicky
Automatic modulation classification is one of the main tasks for developing information security and radio signal surveillance systems. It is also becoming increasingly significant for spectrum monitoring, management, and secure communications. Recently, deep learning models have been widely applied in many fields due to their outstanding feature extraction and classification accuracy. In this paper, the automatic modulation classification performance of several deep convolutional neural networks (CNN) is analyzed on the Fast Fourier Transform (FFT) based signal spectrum and the Short Time Fourier Transform (STFT) based signal spectrogram. By using ResNet18 and MobileNet cross-combined with FFT and STFT input data, the simulation shows that the STFT data provides a higher AMC accuracy than that of FFT data. On the same STFT data, the ResNet18 model outperforms three other models (SqueezeNet, GoogleNet, and MobileNet) in classifying 26 modulation types under the influence of five levels of fading noise with SNRs from −20 dB to +18 dB. Besides, the impact of different window functions in STFT is also investigated. Numerical results indicate that the considered window functions cause an insignificant difference in the AMC accuracy.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
20202 - Communication engineering and systems
Návaznosti výsledku
Projekt
<a href="/cs/project/TM02000035" target="_blank" >TM02000035: Pokroková klasifikace signálů (NEOCLASSIG) pro radio-průzkumné systémy</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2022
Kód důvěrnosti údajů
C - Předmět řešení projektu podléhá obchodnímu tajemství (§ 504 Občanského zákoníku), ale název projektu, cíle projektu a u ukončeného nebo zastaveného projektu zhodnocení výsledku řešení projektu (údaje P03, P04, P15, P19, P29, PN8) dodané do CEP, jsou upraveny tak, aby byly zveřejnitelné.
Údaje specifické pro druh výsledku
Název statě ve sborníku
Performance Analysis of Convolutional Neural Networks with Different Window Functions for Automatic Modulation Classification
ISBN
978-1-6654-9940-8
ISSN
2162-1233
e-ISSN
2162-1241
Počet stran výsledku
5
Strana od-do
153 - 157
Název nakladatele
IEEE
Místo vydání
Jeju Island, Republic of Korea
Místo konání akce
Jeju Island, Republic of Korea
Datum konání akce
1. 1. 2022
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—