DOA-CNN: An automatic system error calibration model for enhancing accuracy in direction of arrival estimation of radio frequency signals
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F25547526%3A_____%2F23%3AN0000004" target="_blank" >RIV/25547526:_____/23:N0000004 - isvavai.cz</a>
Výsledek na webu
<a href="https://ojs.jmst.info/index.php/jmst/article/view/888" target="_blank" >https://ojs.jmst.info/index.php/jmst/article/view/888</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.54939/1859-1043.j.mst.89.2023.43-51" target="_blank" >10.54939/1859-1043.j.mst.89.2023.43-51</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
DOA-CNN: An automatic system error calibration model for enhancing accuracy in direction of arrival estimation of radio frequency signals
Popis výsledku v původním jazyce
This paper presents a research proposal on a deep convolutional neural network for the problem of direction of arrival estimation of radio frequency signals (called DOA-CNN). The DOA-CNN model is designed with multiplication layers to enhance strong features of the data through convolutional stacks enabling the DOA classification accuracy. The evaluation considers several factors affecting the accuracy of DOA estimation for uniform linear array (ULA), including antenna element position errors, and amplitude and phase errors caused by transmission path deviations in the receiver. The analysis and comparison of DOA-CNN with CBF, Capon, MUSIC, Root-MUSIC, and ESPRIT methods and other machine learning methods show that, considering the ideal configuration of the ULA array and the receiver, the Root-MUSIC and ESPRIT methods achieve the best accuracy since they can directly compute the DOA, while the other methods estimate the DOA via angular spectrum, leading to accuracy dependent on the spectral resolution. However, considering ULA errors and transmission path deviations in the receiver, the proposed DOA-CNN model outperforms in terms of accuracy compared to traditional methods and processes faster than some other machine learning models.
Název v anglickém jazyce
DOA-CNN: An automatic system error calibration model for enhancing accuracy in direction of arrival estimation of radio frequency signals
Popis výsledku anglicky
This paper presents a research proposal on a deep convolutional neural network for the problem of direction of arrival estimation of radio frequency signals (called DOA-CNN). The DOA-CNN model is designed with multiplication layers to enhance strong features of the data through convolutional stacks enabling the DOA classification accuracy. The evaluation considers several factors affecting the accuracy of DOA estimation for uniform linear array (ULA), including antenna element position errors, and amplitude and phase errors caused by transmission path deviations in the receiver. The analysis and comparison of DOA-CNN with CBF, Capon, MUSIC, Root-MUSIC, and ESPRIT methods and other machine learning methods show that, considering the ideal configuration of the ULA array and the receiver, the Root-MUSIC and ESPRIT methods achieve the best accuracy since they can directly compute the DOA, while the other methods estimate the DOA via angular spectrum, leading to accuracy dependent on the spectral resolution. However, considering ULA errors and transmission path deviations in the receiver, the proposed DOA-CNN model outperforms in terms of accuracy compared to traditional methods and processes faster than some other machine learning models.
Klasifikace
Druh
J<sub>SC</sub> - Článek v periodiku v databázi SCOPUS
CEP obor
—
OECD FORD obor
20202 - Communication engineering and systems
Návaznosti výsledku
Projekt
<a href="/cs/project/TM02000035" target="_blank" >TM02000035: Pokroková klasifikace signálů (NEOCLASSIG) pro radio-průzkumné systémy</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2023
Kód důvěrnosti údajů
C - Předmět řešení projektu podléhá obchodnímu tajemství (§ 504 Občanského zákoníku), ale název projektu, cíle projektu a u ukončeného nebo zastaveného projektu zhodnocení výsledku řešení projektu (údaje P03, P04, P15, P19, P29, PN8) dodané do CEP, jsou upraveny tak, aby byly zveřejnitelné.
Údaje specifické pro druh výsledku
Název periodika
DOA-CNN: An automatic system error calibration model for enhancing accuracy in direction of arrival estimation of radio frequency signals
ISSN
1859-1043
e-ISSN
—
Svazek periodika
Vol. 89
Číslo periodika v rámci svazku
Vol. 89 (2023)
Stát vydavatele periodika
VN - Vietnamská socialistická republika
Počet stran výsledku
9
Strana od-do
43-51
Kód UT WoS článku
—
EID výsledku v databázi Scopus
999