Understanding customer's online booking intentions using hotel big data analysis
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F25619161%3A_____%2F22%3AN0000004" target="_blank" >RIV/25619161:_____/22:N0000004 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/25619161:_____/22:N0000063
Výsledek na webu
<a href="https://journals.sagepub.com/doi/10.1177/13567667221122107" target="_blank" >https://journals.sagepub.com/doi/10.1177/13567667221122107</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1177/13567667221122107." target="_blank" >10.1177/13567667221122107.</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Understanding customer's online booking intentions using hotel big data analysis
Popis výsledku v původním jazyce
The presented article focuses on the issue of customer segmentation in the hospitality industry and its use for price optimisation. To identify the market segments article uses the Two-Step cluster analysis. The analysis was based on the seven variables (length of stay, average room rate, distribution channel, reservation day, day of arrival, lead time and payment conditions). Six clusters were identified as following segments: Corporates, Early Bird Bookers, Last Minute Bookers, Product Seekers, Values Seekers and Last Minute Bookers. To optimise the price for these segments, article works with the coefficient of price elasticity of demand for the presented market segments. The price elasticity of demand is measured by the log-log regression analysis. Data were colected from the four-star hotel in Prague, Czech Republic and analysis is based on more than 9000 transactions. Last minute bookers segment was the only one with the positive coefficient of price elasticity and has the lowest value of lead time (9,27 in average). Product seekers have the highest coefficient of price elasticity (−3,413) and highest average room rate (3573 CZK in average). Early bird bookers, Long time stayers, Corporates and Value seekers was identified as pricely inelastic.
Název v anglickém jazyce
Understanding customer's online booking intentions using hotel big data analysis
Popis výsledku anglicky
The presented article focuses on the issue of customer segmentation in the hospitality industry and its use for price optimisation. To identify the market segments article uses the Two-Step cluster analysis. The analysis was based on the seven variables (length of stay, average room rate, distribution channel, reservation day, day of arrival, lead time and payment conditions). Six clusters were identified as following segments: Corporates, Early Bird Bookers, Last Minute Bookers, Product Seekers, Values Seekers and Last Minute Bookers. To optimise the price for these segments, article works with the coefficient of price elasticity of demand for the presented market segments. The price elasticity of demand is measured by the log-log regression analysis. Data were colected from the four-star hotel in Prague, Czech Republic and analysis is based on more than 9000 transactions. Last minute bookers segment was the only one with the positive coefficient of price elasticity and has the lowest value of lead time (9,27 in average). Product seekers have the highest coefficient of price elasticity (−3,413) and highest average room rate (3573 CZK in average). Early bird bookers, Long time stayers, Corporates and Value seekers was identified as pricely inelastic.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
50204 - Business and management
Návaznosti výsledku
Projekt
—
Návaznosti
N - Vyzkumna aktivita podporovana z neverejnych zdroju
Ostatní
Rok uplatnění
2022
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Journal of Vacation Marketing
ISSN
1356-7667
e-ISSN
—
Svazek periodika
13
Číslo periodika v rámci svazku
1
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
4
Strana od-do
135-138
Kód UT WoS článku
000847837600001
EID výsledku v databázi Scopus
2-s2.0-85138314586