Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

MULTI-COMPUTER MALWARE DETECTION SYSTEMS WITH METAMORPHIC FUNCTIONALITY

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F25840886%3A_____%2F24%3AN0000011" target="_blank" >RIV/25840886:_____/24:N0000011 - isvavai.cz</a>

  • Výsledek na webu

    <a href="http://nti.khai.edu/ojs/index.php/reks/article/view/reks.2024.1.13/2279" target="_blank" >http://nti.khai.edu/ojs/index.php/reks/article/view/reks.2024.1.13/2279</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.32620/reks.2024.1.13" target="_blank" >10.32620/reks.2024.1.13</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    MULTI-COMPUTER MALWARE DETECTION SYSTEMS WITH METAMORPHIC FUNCTIONALITY

  • Popis výsledku v původním jazyce

    The need to develop new systems for detecting and counteracting malware remains relevant. In addition to malware detection methods, the need to develop new systems for detecting and counteracting malware has become increasingly important. The use of various detection systems and the formation of a variable architecture in them significantly improves the effectiveness of detection, since both for attackers in computer attacks and for malware, understanding the system is significantly complicated. In addition, such systems may contain baits, traps, and, accordingly, modifiable operating environments to deceptively execute programs for research. This paper develops a conceptual model of multicomputer systems, which is designed to ensure the functioning of antivirus bait and traps to detect malware and computer attacks in corporate networks. The proposed approach is intended to prevent and counteract metamorphic virus penetration. This paper presents the conceptual model of multicomputer systems and introduces a defining characteristic responsible for the control of decisions and other defining characteristics of the system. Methods for detecting metamorphic viruses with the possibility of their implementation in the architecture of multi-computer systems with bait and traps are developed so that the system directly joins the detection procedure through its components and decides on the presence of metamorphic code in the executable file. An implementation of a multi-computer malware detection system with metamorphic functionality was developed to prove the feasibility of the proposed conceptual architecture model and the developed methods for detecting metamorphic viruses. An experiment on the functioning of a multi-computer malware detection system was set up, and experimental studies were conducted. The conducted experiments included metamorphic virus detection. In addition, an experiment on the effectiveness of detecting the metamorphic code of viruses was conducted. The efficiency of detecting metamorphic virus code using the developed multi-computer system was also investigated, and the presence of improved detection was established. The directions of further work are to extend the results of this work to new types of malware.

  • Název v anglickém jazyce

    MULTI-COMPUTER MALWARE DETECTION SYSTEMS WITH METAMORPHIC FUNCTIONALITY

  • Popis výsledku anglicky

    The need to develop new systems for detecting and counteracting malware remains relevant. In addition to malware detection methods, the need to develop new systems for detecting and counteracting malware has become increasingly important. The use of various detection systems and the formation of a variable architecture in them significantly improves the effectiveness of detection, since both for attackers in computer attacks and for malware, understanding the system is significantly complicated. In addition, such systems may contain baits, traps, and, accordingly, modifiable operating environments to deceptively execute programs for research. This paper develops a conceptual model of multicomputer systems, which is designed to ensure the functioning of antivirus bait and traps to detect malware and computer attacks in corporate networks. The proposed approach is intended to prevent and counteract metamorphic virus penetration. This paper presents the conceptual model of multicomputer systems and introduces a defining characteristic responsible for the control of decisions and other defining characteristics of the system. Methods for detecting metamorphic viruses with the possibility of their implementation in the architecture of multi-computer systems with bait and traps are developed so that the system directly joins the detection procedure through its components and decides on the presence of metamorphic code in the executable file. An implementation of a multi-computer malware detection system with metamorphic functionality was developed to prove the feasibility of the proposed conceptual architecture model and the developed methods for detecting metamorphic viruses. An experiment on the functioning of a multi-computer malware detection system was set up, and experimental studies were conducted. The conducted experiments included metamorphic virus detection. In addition, an experiment on the effectiveness of detecting the metamorphic code of viruses was conducted. The efficiency of detecting metamorphic virus code using the developed multi-computer system was also investigated, and the presence of improved detection was established. The directions of further work are to extend the results of this work to new types of malware.

Klasifikace

  • Druh

    J<sub>SC</sub> - Článek v periodiku v databázi SCOPUS

  • CEP obor

  • OECD FORD obor

    20202 - Communication engineering and systems

Návaznosti výsledku

  • Projekt

  • Návaznosti

    N - Vyzkumna aktivita podporovana z neverejnych zdroju

Ostatní

  • Rok uplatnění

    2024

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Radioelectronic and Computer Systems

  • ISSN

    1814-4225

  • e-ISSN

    2663-2012

  • Svazek periodika

    2024

  • Číslo periodika v rámci svazku

    1

  • Stát vydavatele periodika

    UA - Ukrajina

  • Počet stran výsledku

    24

  • Strana od-do

    152-175

  • Kód UT WoS článku

  • EID výsledku v databázi Scopus

    2-s2.0-85192967003