Influence of Heat Treatment on the Microstructure and Mechanical Properties of Alloy 825 at Cryogenic Temperatures
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F26316919%3A_____%2F18%3AN0000041" target="_blank" >RIV/26316919:_____/18:N0000041 - isvavai.cz</a>
Výsledek na webu
<a href="http://ansannual.org/wp-content/2018/Data/pdfs/579-25325.pdf" target="_blank" >http://ansannual.org/wp-content/2018/Data/pdfs/579-25325.pdf</a>
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Influence of Heat Treatment on the Microstructure and Mechanical Properties of Alloy 825 at Cryogenic Temperatures
Popis výsledku v původním jazyce
During the past years, all engineering fields developing fusion technology to allow building a device like ITER or W7-X were pushed to the limits. Now as the production of components for ITER is on-going, solutions for the next generation of fusion reactors is in the focus. Looking at the cryogenic structures with the superconducting magnets as a core component, material development was done in the last decades to allow structural integrity at low temperatures [1]. This is mandatory, due to the acting Lorentz forces at the operating magnetic field up to about 12T. Looking to the dynamic development of magnet systems from large, as the present DEMO baseline [2] to small devices like ARC [3], the structural material is one of the major limiting factors due to the envisaged magnetic fields acting on the magnet structure. Hence, high strength materials for cryogenic use will open the area of design for new superconducting magnets, regardless if classical low or high-temperature superconductors are used.
Název v anglickém jazyce
Influence of Heat Treatment on the Microstructure and Mechanical Properties of Alloy 825 at Cryogenic Temperatures
Popis výsledku anglicky
During the past years, all engineering fields developing fusion technology to allow building a device like ITER or W7-X were pushed to the limits. Now as the production of components for ITER is on-going, solutions for the next generation of fusion reactors is in the focus. Looking at the cryogenic structures with the superconducting magnets as a core component, material development was done in the last decades to allow structural integrity at low temperatures [1]. This is mandatory, due to the acting Lorentz forces at the operating magnetic field up to about 12T. Looking to the dynamic development of magnet systems from large, as the present DEMO baseline [2] to small devices like ARC [3], the structural material is one of the major limiting factors due to the envisaged magnetic fields acting on the magnet structure. Hence, high strength materials for cryogenic use will open the area of design for new superconducting magnets, regardless if classical low or high-temperature superconductors are used.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
20501 - Materials engineering
Návaznosti výsledku
Projekt
<a href="/cs/project/LO1412" target="_blank" >LO1412: Rozvoj Západočeského materiálově metalurgického Centra</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2018
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Transactions of the American Nuclear Society
ISBN
—
ISSN
0003-018X
e-ISSN
—
Počet stran výsledku
3
Strana od-do
1454-1456
Název nakladatele
American Nuclear Society
Místo vydání
Illinois
Místo konání akce
Philadelphia, Pennsylvania, USA
Datum konání akce
17. 6. 2018
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—