Fracture analysis in directed energy deposition (DED) manufactured 316L stainless steel using a phase-field approach
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F26316919%3A_____%2F20%3AN0000017" target="_blank" >RIV/26316919:_____/20:N0000017 - isvavai.cz</a>
Výsledek na webu
<a href="https://www.sciencedirect.com/science/article/abs/pii/S0168874X20300974" target="_blank" >https://www.sciencedirect.com/science/article/abs/pii/S0168874X20300974</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.finel.2020.103417" target="_blank" >10.1016/j.finel.2020.103417</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Fracture analysis in directed energy deposition (DED) manufactured 316L stainless steel using a phase-field approach
Popis výsledku v původním jazyce
Experimental and numerical study regarding fracture in laser-processed steel components is addressed in the present work. Samples of stainless steel (SS) 316L were obtained by an additive manufacturing process, the directed energy deposition (DED), using different deposition orientations, and tested experimentally until fracture. Microstructural investigations, prior and after fracture, were performed by observing micro-cavities and porosities and fractographic images of the fracture surfaces. A numerical approach based on the phase-field diffusive model was utilised in a micromechanical pressure-dependent plasticity context using Rousselier damage criterion and implemented within the finite element framework. The ability to predict the material failure induced by the porosity evolution through the micro-void growth mechanism is considered as a key feature of the proposed material model. The performance of the numerical model is assessed via material deformation analysis, including initiation and propagation of cracks, which are found to be in good agreement with the experimental and fractographic observations from the fabricated tensile test samples.
Název v anglickém jazyce
Fracture analysis in directed energy deposition (DED) manufactured 316L stainless steel using a phase-field approach
Popis výsledku anglicky
Experimental and numerical study regarding fracture in laser-processed steel components is addressed in the present work. Samples of stainless steel (SS) 316L were obtained by an additive manufacturing process, the directed energy deposition (DED), using different deposition orientations, and tested experimentally until fracture. Microstructural investigations, prior and after fracture, were performed by observing micro-cavities and porosities and fractographic images of the fracture surfaces. A numerical approach based on the phase-field diffusive model was utilised in a micromechanical pressure-dependent plasticity context using Rousselier damage criterion and implemented within the finite element framework. The ability to predict the material failure induced by the porosity evolution through the micro-void growth mechanism is considered as a key feature of the proposed material model. The performance of the numerical model is assessed via material deformation analysis, including initiation and propagation of cracks, which are found to be in good agreement with the experimental and fractographic observations from the fabricated tensile test samples.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
20501 - Materials engineering
Návaznosti výsledku
Projekt
<a href="/cs/project/EF17_048%2F0007350" target="_blank" >EF17_048/0007350: Předaplikační výzkum funkčně graduovaných materiálů pomocí aditivních technologií</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2020
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
FINITE ELEMENTS IN ANALYSIS AND DESIGN
ISSN
0168-874X
e-ISSN
1872-6925
Svazek periodika
177
Číslo periodika v rámci svazku
Září 2020
Stát vydavatele periodika
NL - Nizozemsko
Počet stran výsledku
12
Strana od-do
nestránkováno
Kód UT WoS článku
000573937000005
EID výsledku v databázi Scopus
2-s2.0-85086068214