Stellite coating deposited by directed energy deposition
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F26316919%3A_____%2F20%3AN0000041" target="_blank" >RIV/26316919:_____/20:N0000041 - isvavai.cz</a>
Výsledek na webu
<a href="https://www.confer.cz/metal/2020/read/3559-stellite-coating-deposited-by-directed-energy-deposition.pdf" target="_blank" >https://www.confer.cz/metal/2020/read/3559-stellite-coating-deposited-by-directed-energy-deposition.pdf</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.37904/metal.2020.3559" target="_blank" >10.37904/metal.2020.3559</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Stellite coating deposited by directed energy deposition
Popis výsledku v původním jazyce
This paper explores a protective stellite coating on 1.4922 martensitic steel. Stellite coatings are often used to improve the properties of the part's surface. The microstructure of the sample was analysed and its hardness measured. Protective coatings enhance mechanical and corrosion properties of the substrate, and thus extend the life of the respective part. They can be created by galvanizing, ion implantation, thermal spraying, or by more recent methods, such as laser cladding, DED (directed energy deposition) and others. DED is one of the metal deposition processes that fall in the AM category (additive manufacturing). It was used to deposit the protective coating in the present study. DED is an evolving technology which is suitable not only for prototype development, but also for promising applications involving surface treatment and repairs of functional parts. DED uses a laser beam as a thermal source to melt powder which is blown concentrically with the laser beam and the protective gas. The unique advantage of this method is a very good cohesion and bonding between the substrate and the deposited layer with a smaller HAZ (heat-affected zone). It produces comparatively few inhomogeneities and defects, which makes it a promising technique for protective layer applications. Stellite was chosen as a protective coating material because this group of alloys exhibits excellent properties such as high wear resistance, abrasion resistance, superior corrosion resistance and erosion resistance. These are relevant in many industrial sectors, such as power generation, aerospace and others. Stellite 21 was used in the present study.
Název v anglickém jazyce
Stellite coating deposited by directed energy deposition
Popis výsledku anglicky
This paper explores a protective stellite coating on 1.4922 martensitic steel. Stellite coatings are often used to improve the properties of the part's surface. The microstructure of the sample was analysed and its hardness measured. Protective coatings enhance mechanical and corrosion properties of the substrate, and thus extend the life of the respective part. They can be created by galvanizing, ion implantation, thermal spraying, or by more recent methods, such as laser cladding, DED (directed energy deposition) and others. DED is one of the metal deposition processes that fall in the AM category (additive manufacturing). It was used to deposit the protective coating in the present study. DED is an evolving technology which is suitable not only for prototype development, but also for promising applications involving surface treatment and repairs of functional parts. DED uses a laser beam as a thermal source to melt powder which is blown concentrically with the laser beam and the protective gas. The unique advantage of this method is a very good cohesion and bonding between the substrate and the deposited layer with a smaller HAZ (heat-affected zone). It produces comparatively few inhomogeneities and defects, which makes it a promising technique for protective layer applications. Stellite was chosen as a protective coating material because this group of alloys exhibits excellent properties such as high wear resistance, abrasion resistance, superior corrosion resistance and erosion resistance. These are relevant in many industrial sectors, such as power generation, aerospace and others. Stellite 21 was used in the present study.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
20506 - Coating and films
Návaznosti výsledku
Projekt
<a href="/cs/project/EF17_048%2F0007350" target="_blank" >EF17_048/0007350: Předaplikační výzkum funkčně graduovaných materiálů pomocí aditivních technologií</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2020
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
METAL 2020 - 29th International Conference on Metallurgy and Materials, Conference Proceedings
ISBN
978-808729497-0
ISSN
2694-9296
e-ISSN
—
Počet stran výsledku
5
Strana od-do
823-827
Název nakladatele
TANGER Ltd.
Místo vydání
Ostrava
Místo konání akce
Brno
Datum konání akce
20. 5. 2020
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—