Effect of deposit thickness on microstructure and mechanical properties at ambient and elevated temperatures for Inconel 718 superalloy fabricated by directed energy deposition
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F26316919%3A_____%2F22%3AN0000006" target="_blank" >RIV/26316919:_____/22:N0000006 - isvavai.cz</a>
Výsledek na webu
<a href="https://www.sciencedirect.com/science/article/abs/pii/S0925838822011148" target="_blank" >https://www.sciencedirect.com/science/article/abs/pii/S0925838822011148</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.jallcom.2022.164723" target="_blank" >10.1016/j.jallcom.2022.164723</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Effect of deposit thickness on microstructure and mechanical properties at ambient and elevated temperatures for Inconel 718 superalloy fabricated by directed energy deposition
Popis výsledku v původním jazyce
The effect of deposit thickness on the microstructure and the mechanical properties of Inconel 718 (IN718) fabricated by directed energy deposition was systematically investigated in both as-deposited (AD) and homogenization + solution + aging (HSA) treated conditions. Results indicate that deposit thickness for thin parts has a more significant impact on the microstructure and subsequent room (RT) and elevated tem-perature (650 degrees C) tensile properties compared to thick parts. Applying HSA treatment can effectively homogenize the microstructure of thick builds with a microstructure transition from columnar-dendritic grain structure presented in the AD condition to recrystallized equiaxted grain structure, which results in almost similar yield strength, ultimate tensile strength and ductility of ~ 970 MPa, ~ 1237 MPa, ~ 20% at RT and ~ 816 MPa, ~ 954 MPa, ~ 12% at 650 degrees C, respectively. In contrast, thin parts maintaining columnar grain features during HSA treatment yield a higher yield strength of 1112 MPa (increased by 15%) at RT and 936 MPa (increased by 15%) at 650 degrees C, but much lower ductility of 9% (decreased by 54%) at RT and 6% MPa (decreased by 51%) at 650 degrees C. The remaining large amount of residual stress primarily contribute to the enhancement of yield strength, as well as large amount of delta phase responsible for the much worse ductility for thin parts after HSA treatment. In addition, the underlying thermal history evolution in various deposit thickness is elucidated by the thermal simulations with the use of Finite Element Method (FEM) method within 3DExperience software. The results present in the current study show the capability of the directed energy deposition process to manufacture homogeneous components with varying thickness for high temperature application after a proper heat treatment, with regard to their initial as-deposited materials.(c) 2022 Elsevier B.V. All rights reserved.
Název v anglickém jazyce
Effect of deposit thickness on microstructure and mechanical properties at ambient and elevated temperatures for Inconel 718 superalloy fabricated by directed energy deposition
Popis výsledku anglicky
The effect of deposit thickness on the microstructure and the mechanical properties of Inconel 718 (IN718) fabricated by directed energy deposition was systematically investigated in both as-deposited (AD) and homogenization + solution + aging (HSA) treated conditions. Results indicate that deposit thickness for thin parts has a more significant impact on the microstructure and subsequent room (RT) and elevated tem-perature (650 degrees C) tensile properties compared to thick parts. Applying HSA treatment can effectively homogenize the microstructure of thick builds with a microstructure transition from columnar-dendritic grain structure presented in the AD condition to recrystallized equiaxted grain structure, which results in almost similar yield strength, ultimate tensile strength and ductility of ~ 970 MPa, ~ 1237 MPa, ~ 20% at RT and ~ 816 MPa, ~ 954 MPa, ~ 12% at 650 degrees C, respectively. In contrast, thin parts maintaining columnar grain features during HSA treatment yield a higher yield strength of 1112 MPa (increased by 15%) at RT and 936 MPa (increased by 15%) at 650 degrees C, but much lower ductility of 9% (decreased by 54%) at RT and 6% MPa (decreased by 51%) at 650 degrees C. The remaining large amount of residual stress primarily contribute to the enhancement of yield strength, as well as large amount of delta phase responsible for the much worse ductility for thin parts after HSA treatment. In addition, the underlying thermal history evolution in various deposit thickness is elucidated by the thermal simulations with the use of Finite Element Method (FEM) method within 3DExperience software. The results present in the current study show the capability of the directed energy deposition process to manufacture homogeneous components with varying thickness for high temperature application after a proper heat treatment, with regard to their initial as-deposited materials.(c) 2022 Elsevier B.V. All rights reserved.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
20501 - Materials engineering
Návaznosti výsledku
Projekt
<a href="/cs/project/EF17_048%2F0007350" target="_blank" >EF17_048/0007350: Předaplikační výzkum funkčně graduovaných materiálů pomocí aditivních technologií</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2022
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
JOURNAL OF ALLOYS AND COMPOUNDS
ISSN
0925-8388
e-ISSN
1873-4669
Svazek periodika
908
Číslo periodika v rámci svazku
2022-07-05
Stát vydavatele periodika
CH - Švýcarská konfederace
Počet stran výsledku
17
Strana od-do
nestránkováno
Kód UT WoS článku
000792884600002
EID výsledku v databázi Scopus
2-s2.0-85126964251