Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

The influence of laser power on the interfaces of functionally graded materials fabricated by powder- based directed energy deposition

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F26316919%3A_____%2F22%3AN0000023" target="_blank" >RIV/26316919:_____/22:N0000023 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://link.springer.com/article/10.1007/s10853-022-07453-9" target="_blank" >https://link.springer.com/article/10.1007/s10853-022-07453-9</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1007/s10853-022-07453-9" target="_blank" >10.1007/s10853-022-07453-9</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    The influence of laser power on the interfaces of functionally graded materials fabricated by powder- based directed energy deposition

  • Popis výsledku v původním jazyce

    Powder-based directed energy deposition (DED) technology with separate feeders for different individual materials enables the deposition of functionally graded materials (FGM) in combinations that would be very problematic using conventional technologies. These emerging innovative materials with the tailored properties of bimetallic material structures have potential applications in the energy, automotive and petrochemical industries. The combination of materials such as austenitic stainless steel 316L in combination with nickel superalloy Inconel 718 may satisfy requirements for corrosion and oxidation resistance, while maintaining suitable strength even at increased temperatures, at reasonable costs. However, the joining of dissimilar materials has certain limitations, and success depends on their mutual arrangement and the deposition parameters. The experimental program of the present study was aimed at optimizing the laser power of the powder-based DED process with respect to the quality of the interfaces of functionally graded materials in terms of microstructure evolution, interface quality and mechanical properties. One of the main objectives of the research was the analysis of two types of interfaces and the reduction in crack generation and propagation on the interface transition from Inconel 718 to 316L depending on the applied laser power, which ranged from 350 to 500 W. The presence of solidification cracks (SC) together with ductility dip cracking (DDC) played the most significant role in terms of the quality of this type of interface and significantly affected the values of the mechanical properties. Miniaturized tensile testing (MTT) in ZYX orientation at the individual interfaces' types throughout the deposit did not prove any dependence of the tensile characteristics on the sample position (bottom, middle and upper part of the block), but were strongly associated with changes in the laser power. The results presented in this study prove that cracking at interfaces of functionally graded materials is minimized by optimizing the deposition process parameters, specifically the laser power. The research presents a promising application of nickel superalloy Inconel 718 on a 316L stainless steel substrate in a horizontal configuration.

  • Název v anglickém jazyce

    The influence of laser power on the interfaces of functionally graded materials fabricated by powder- based directed energy deposition

  • Popis výsledku anglicky

    Powder-based directed energy deposition (DED) technology with separate feeders for different individual materials enables the deposition of functionally graded materials (FGM) in combinations that would be very problematic using conventional technologies. These emerging innovative materials with the tailored properties of bimetallic material structures have potential applications in the energy, automotive and petrochemical industries. The combination of materials such as austenitic stainless steel 316L in combination with nickel superalloy Inconel 718 may satisfy requirements for corrosion and oxidation resistance, while maintaining suitable strength even at increased temperatures, at reasonable costs. However, the joining of dissimilar materials has certain limitations, and success depends on their mutual arrangement and the deposition parameters. The experimental program of the present study was aimed at optimizing the laser power of the powder-based DED process with respect to the quality of the interfaces of functionally graded materials in terms of microstructure evolution, interface quality and mechanical properties. One of the main objectives of the research was the analysis of two types of interfaces and the reduction in crack generation and propagation on the interface transition from Inconel 718 to 316L depending on the applied laser power, which ranged from 350 to 500 W. The presence of solidification cracks (SC) together with ductility dip cracking (DDC) played the most significant role in terms of the quality of this type of interface and significantly affected the values of the mechanical properties. Miniaturized tensile testing (MTT) in ZYX orientation at the individual interfaces' types throughout the deposit did not prove any dependence of the tensile characteristics on the sample position (bottom, middle and upper part of the block), but were strongly associated with changes in the laser power. The results presented in this study prove that cracking at interfaces of functionally graded materials is minimized by optimizing the deposition process parameters, specifically the laser power. The research presents a promising application of nickel superalloy Inconel 718 on a 316L stainless steel substrate in a horizontal configuration.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    20501 - Materials engineering

Návaznosti výsledku

  • Projekt

    <a href="/cs/project/EF17_048%2F0007350" target="_blank" >EF17_048/0007350: Předaplikační výzkum funkčně graduovaných materiálů pomocí aditivních technologií</a><br>

  • Návaznosti

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Ostatní

  • Rok uplatnění

    2022

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    JOURNAL OF MATERIALS SCIENCE

  • ISSN

    0022-2461

  • e-ISSN

    1573-4803

  • Svazek periodika

    57

  • Číslo periodika v rámci svazku

    28

  • Stát vydavatele periodika

    US - Spojené státy americké

  • Počet stran výsledku

    9

  • Strana od-do

    13695-13723

  • Kód UT WoS článku

    000826851600011

  • EID výsledku v databázi Scopus

    2-s2.0-85134509205