Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Thermal stability of dislocation structure and its effect on creep property in austenitic 316L stainless steel manufactured by directed energy deposition

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F26316919%3A_____%2F23%3AN0000028" target="_blank" >RIV/26316919:_____/23:N0000028 - isvavai.cz</a>

  • Nalezeny alternativní kódy

    RIV/00216208:11320/23:10474186

  • Výsledek na webu

    <a href="https://www.sciencedirect.com/science/article/abs/pii/S0921509323004057?via%3Dihub" target="_blank" >https://www.sciencedirect.com/science/article/abs/pii/S0921509323004057?via%3Dihub</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1016/j.msea.2023.144981" target="_blank" >10.1016/j.msea.2023.144981</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Thermal stability of dislocation structure and its effect on creep property in austenitic 316L stainless steel manufactured by directed energy deposition

  • Popis výsledku v původním jazyce

    The objective of this study is to investigate the thermal stability of dislocation structure and its effect on the creep behaviour of laser-directed energy deposited 316L stainless steel (L-DED-316L SS). Post-processing heat treatments at temperatures ranging from 300 to 1200 degrees C were performed on the as-deposited DED samples. The microstructural changes induced by the heat treatment were correlated to the corresponding variations of the room temperature tensile properties and creep behaviour at 650 degrees C/225 MPa. Results show that dislocations produced during DED process tend to distribute uniformly, with only a few localized fine dislocation cells (average cell size of -0.4 mu m) being detected. At 600 degrees C, the remaining dislocations rearrange and organize into a coarse dislocation cell structure with an average cell size of -1.6 mu m, leading to a slight decrease in yield strength, while the creep performance is not obviously affected. At 800 degrees C, the annihilation of dislocations and destruction of dislocation cell structure, as well as elemental diffusion contribute to a significant drop in yield strength and creep rupture time with a noticeable increase in steady creep rate. Further increasing heat treatment temperature above 1000 degrees C removes the dislocation cell structure and elemental segregation on cell walls, which results in a continuous increase in steady creep rate. The present work demonstrates that the presence of chemical micro-segregation is crucial for the stabilization of dislocation cells structure and the resulted creep performance of the heat-treated L-DED samples.

  • Název v anglickém jazyce

    Thermal stability of dislocation structure and its effect on creep property in austenitic 316L stainless steel manufactured by directed energy deposition

  • Popis výsledku anglicky

    The objective of this study is to investigate the thermal stability of dislocation structure and its effect on the creep behaviour of laser-directed energy deposited 316L stainless steel (L-DED-316L SS). Post-processing heat treatments at temperatures ranging from 300 to 1200 degrees C were performed on the as-deposited DED samples. The microstructural changes induced by the heat treatment were correlated to the corresponding variations of the room temperature tensile properties and creep behaviour at 650 degrees C/225 MPa. Results show that dislocations produced during DED process tend to distribute uniformly, with only a few localized fine dislocation cells (average cell size of -0.4 mu m) being detected. At 600 degrees C, the remaining dislocations rearrange and organize into a coarse dislocation cell structure with an average cell size of -1.6 mu m, leading to a slight decrease in yield strength, while the creep performance is not obviously affected. At 800 degrees C, the annihilation of dislocations and destruction of dislocation cell structure, as well as elemental diffusion contribute to a significant drop in yield strength and creep rupture time with a noticeable increase in steady creep rate. Further increasing heat treatment temperature above 1000 degrees C removes the dislocation cell structure and elemental segregation on cell walls, which results in a continuous increase in steady creep rate. The present work demonstrates that the presence of chemical micro-segregation is crucial for the stabilization of dislocation cells structure and the resulted creep performance of the heat-treated L-DED samples.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    20301 - Mechanical engineering

Návaznosti výsledku

  • Projekt

    <a href="/cs/project/EF16_019%2F0000836" target="_blank" >EF16_019/0000836: Výzkum pokročilých ocelí s unikátními vlastnostmi</a><br>

  • Návaznosti

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Ostatní

  • Rok uplatnění

    2023

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING

  • ISSN

    0921-5093

  • e-ISSN

    1873-4936

  • Svazek periodika

    876

  • Číslo periodika v rámci svazku

    MAY 17 2023

  • Stát vydavatele periodika

    CH - Švýcarská konfederace

  • Počet stran výsledku

    9

  • Strana od-do

    nestránkováno

  • Kód UT WoS článku

    000991296100001

  • EID výsledku v databázi Scopus

    2-s2.0-85152228804