Thermal stability of dislocation structure and its effect on creep property in austenitic 316L stainless steel manufactured by directed energy deposition
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F26316919%3A_____%2F23%3AN0000028" target="_blank" >RIV/26316919:_____/23:N0000028 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/00216208:11320/23:10474186
Výsledek na webu
<a href="https://www.sciencedirect.com/science/article/abs/pii/S0921509323004057?via%3Dihub" target="_blank" >https://www.sciencedirect.com/science/article/abs/pii/S0921509323004057?via%3Dihub</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.msea.2023.144981" target="_blank" >10.1016/j.msea.2023.144981</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Thermal stability of dislocation structure and its effect on creep property in austenitic 316L stainless steel manufactured by directed energy deposition
Popis výsledku v původním jazyce
The objective of this study is to investigate the thermal stability of dislocation structure and its effect on the creep behaviour of laser-directed energy deposited 316L stainless steel (L-DED-316L SS). Post-processing heat treatments at temperatures ranging from 300 to 1200 degrees C were performed on the as-deposited DED samples. The microstructural changes induced by the heat treatment were correlated to the corresponding variations of the room temperature tensile properties and creep behaviour at 650 degrees C/225 MPa. Results show that dislocations produced during DED process tend to distribute uniformly, with only a few localized fine dislocation cells (average cell size of -0.4 mu m) being detected. At 600 degrees C, the remaining dislocations rearrange and organize into a coarse dislocation cell structure with an average cell size of -1.6 mu m, leading to a slight decrease in yield strength, while the creep performance is not obviously affected. At 800 degrees C, the annihilation of dislocations and destruction of dislocation cell structure, as well as elemental diffusion contribute to a significant drop in yield strength and creep rupture time with a noticeable increase in steady creep rate. Further increasing heat treatment temperature above 1000 degrees C removes the dislocation cell structure and elemental segregation on cell walls, which results in a continuous increase in steady creep rate. The present work demonstrates that the presence of chemical micro-segregation is crucial for the stabilization of dislocation cells structure and the resulted creep performance of the heat-treated L-DED samples.
Název v anglickém jazyce
Thermal stability of dislocation structure and its effect on creep property in austenitic 316L stainless steel manufactured by directed energy deposition
Popis výsledku anglicky
The objective of this study is to investigate the thermal stability of dislocation structure and its effect on the creep behaviour of laser-directed energy deposited 316L stainless steel (L-DED-316L SS). Post-processing heat treatments at temperatures ranging from 300 to 1200 degrees C were performed on the as-deposited DED samples. The microstructural changes induced by the heat treatment were correlated to the corresponding variations of the room temperature tensile properties and creep behaviour at 650 degrees C/225 MPa. Results show that dislocations produced during DED process tend to distribute uniformly, with only a few localized fine dislocation cells (average cell size of -0.4 mu m) being detected. At 600 degrees C, the remaining dislocations rearrange and organize into a coarse dislocation cell structure with an average cell size of -1.6 mu m, leading to a slight decrease in yield strength, while the creep performance is not obviously affected. At 800 degrees C, the annihilation of dislocations and destruction of dislocation cell structure, as well as elemental diffusion contribute to a significant drop in yield strength and creep rupture time with a noticeable increase in steady creep rate. Further increasing heat treatment temperature above 1000 degrees C removes the dislocation cell structure and elemental segregation on cell walls, which results in a continuous increase in steady creep rate. The present work demonstrates that the presence of chemical micro-segregation is crucial for the stabilization of dislocation cells structure and the resulted creep performance of the heat-treated L-DED samples.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
20301 - Mechanical engineering
Návaznosti výsledku
Projekt
<a href="/cs/project/EF16_019%2F0000836" target="_blank" >EF16_019/0000836: Výzkum pokročilých ocelí s unikátními vlastnostmi</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2023
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING
ISSN
0921-5093
e-ISSN
1873-4936
Svazek periodika
876
Číslo periodika v rámci svazku
MAY 17 2023
Stát vydavatele periodika
CH - Švýcarská konfederace
Počet stran výsledku
9
Strana od-do
nestránkováno
Kód UT WoS článku
000991296100001
EID výsledku v databázi Scopus
2-s2.0-85152228804