Assessment of location- and orientation- dependent fatigue behaviour for as-deposited LPBF Inconel 718 using miniaturized specimens
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F26316919%3A_____%2F24%3AN0000008" target="_blank" >RIV/26316919:_____/24:N0000008 - isvavai.cz</a>
Výsledek na webu
<a href="https://www.sciencedirect.com/science/article/abs/pii/S0167844224003434?via%3Dihub" target="_blank" >https://www.sciencedirect.com/science/article/abs/pii/S0167844224003434?via%3Dihub</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.tafmec.2024.104593" target="_blank" >10.1016/j.tafmec.2024.104593</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Assessment of location- and orientation- dependent fatigue behaviour for as-deposited LPBF Inconel 718 using miniaturized specimens
Popis výsledku v původním jazyce
The location- and orientation-dependence of tensile properties and low/high cycle fatigue behaviour of additively manufactured IN718 were determined on as-deposited material with the use of miniaturized specimens. Local properties were determined throughout the build height for two orientations by using 39 fatigue samples and 32 tensile test coupons excised from bulk builds. The low cycle fatigue behaviour is described with the use of the Manson-Coffin approach while the high cycle regime was analysed using a Wohler-based assessment. Extensive microstructure characterization included optical microscopy, electron microscopy with EDX and EBSD analyses, fractography and computer tomography in order to rationalize the fatigue anisotropy in certain regimes. Significant anisotropy in the low cycle (i.e. high strain) fatigue regime is attributed to the differences in microstructure, UTS, and ductility in the as-deposited material. The fatigue behaviour in the high cycle (i.e. low strain) regime was worse in Z-oriented samples, partly due to its somewhat lower UTS and detrimental orientation of lack-of-fusion defects that served as fatigue initiation sites. The complete axial fatigue behaviour, which evaluated the whole range from uniaxial tension (i.e. one cycle) through the low cycle to high cycle regime, was attempted with the use of the Stussi model. While the various modelling approaches that used either uniaxial tension or cyclic tension data captured some of the observations, the detrimental effects of process-induced defects and their orientation with respect to the loading direction prevented a complete description of the fatigue behaviour in the high cycle fatigue regime. Nevertheless, the use of miniaturized samples provides a unique capability to examine both the location- and orientation-dependent fatigue behaviour relevant to many engineering structures.
Název v anglickém jazyce
Assessment of location- and orientation- dependent fatigue behaviour for as-deposited LPBF Inconel 718 using miniaturized specimens
Popis výsledku anglicky
The location- and orientation-dependence of tensile properties and low/high cycle fatigue behaviour of additively manufactured IN718 were determined on as-deposited material with the use of miniaturized specimens. Local properties were determined throughout the build height for two orientations by using 39 fatigue samples and 32 tensile test coupons excised from bulk builds. The low cycle fatigue behaviour is described with the use of the Manson-Coffin approach while the high cycle regime was analysed using a Wohler-based assessment. Extensive microstructure characterization included optical microscopy, electron microscopy with EDX and EBSD analyses, fractography and computer tomography in order to rationalize the fatigue anisotropy in certain regimes. Significant anisotropy in the low cycle (i.e. high strain) fatigue regime is attributed to the differences in microstructure, UTS, and ductility in the as-deposited material. The fatigue behaviour in the high cycle (i.e. low strain) regime was worse in Z-oriented samples, partly due to its somewhat lower UTS and detrimental orientation of lack-of-fusion defects that served as fatigue initiation sites. The complete axial fatigue behaviour, which evaluated the whole range from uniaxial tension (i.e. one cycle) through the low cycle to high cycle regime, was attempted with the use of the Stussi model. While the various modelling approaches that used either uniaxial tension or cyclic tension data captured some of the observations, the detrimental effects of process-induced defects and their orientation with respect to the loading direction prevented a complete description of the fatigue behaviour in the high cycle fatigue regime. Nevertheless, the use of miniaturized samples provides a unique capability to examine both the location- and orientation-dependent fatigue behaviour relevant to many engineering structures.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
20501 - Materials engineering
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2024
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
THEORETICAL AND APPLIED FRACTURE MECHANICS
ISSN
0167-8442
e-ISSN
1872-7638
Svazek periodika
133
Číslo periodika v rámci svazku
B
Stát vydavatele periodika
NL - Nizozemsko
Počet stran výsledku
16
Strana od-do
nestránkováno
Kód UT WoS článku
001285851800001
EID výsledku v databázi Scopus
2-s2.0-85200158775