Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Fracture behaviour assessment of the additively manufactured and HPT-processed Al-Si-Cu alloy

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F26316919%3A_____%2F24%3AN0000009" target="_blank" >RIV/26316919:_____/24:N0000009 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://journals.sagepub.com/doi/10.1177/02670836241262477" target="_blank" >https://journals.sagepub.com/doi/10.1177/02670836241262477</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1177/02670836241262477" target="_blank" >10.1177/02670836241262477</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Fracture behaviour assessment of the additively manufactured and HPT-processed Al-Si-Cu alloy

  • Popis výsledku v původním jazyce

    Ultrafine-grained Al-9%Si-3%Cu alloy was achieved by a combination of laser powder bed fusion (LPBF) additive manufacturing and high-pressure torsion (HPT) processing in this investigation. The alloy was initially deposited layer-by-layer using a bi-directional scan strategy in LPBF with a scan rate of 1000 mms-1, a layer thickness of 40 mu m and a hatch spacing of 200 mu m, leading to a melt pool morphology with an average width of 150 mu m and differing lengths. This led to a grain size of 722 nm and a dislocation density of 1.1 x 1014 m-2. This as-deposited alloy was then processed using HPT at room temperature using an applied pressure of 6.0 GPa and at a speed of one revolution per minute for different numbers of turns: half, one, five and ten turns. The alloy after HPT processing showed ultrafine grains with a grain size of 66 nm, well-dispersed nanosized intermetallic particles with sizes of 50-90 nm, the disappearance of the pool morphology and a notable dislocation density of about 6.2 x 1014 m-2 for the ten turns HPT-processed alloy. The as-deposited and subsequently HPT-processed samples were tensile tested at 298 and 573 K at different strain rates between 10-4 and 10-1 s-1. The elongation-to-failure and tensile strength were recorded and the fracture surfaces were also inspected using scanning electron microscopy and then correlated with the manufacturing, processing and tensile testing conditions. The alloy performance in tensile testing has been evaluated at ambient and elevated temperatures in terms of structural evolution and fractography for the first time. Ultrafine alpha-aluminium grains and nanosized eutectic silicon particles obtained by room temperature HPT-processing of the alloy have significantly improved the mechanical properties and microstructural stability at ambient and elevated testing temperatures for the HPT-processed additively manufactured alloy compared to the as-deposited additively manufactured and counterpart conventional alloys. The HPT-processed tensile samples showed a significant tensile strength of 700 MPa at 298 K and elongation-to-failure of 220% at 573 K, which is higher than that seen in the as-deposited tensile samples where 400 MPa and 106% are observed under the same testing conditions. Fractographic observations demonstrated that mixed brittle and shear ductile fractures dominated in the as-deposited tensile samples at 298 K, and tension ductile fracture dominated at 573 K. However, the HPT-processed tensile samples exhibited tension ductile and shear ductile fractures at 298 K, and tension ductile fracture at 573 K. The ultrafine-grained microstructure produced by the HPT application in the LBPF-manufactured alloy controls effectively the fracture mechanisms, dimple morphology and thus strength and elongation in comparison with the as-deposited additively manufactured microstructure.

  • Název v anglickém jazyce

    Fracture behaviour assessment of the additively manufactured and HPT-processed Al-Si-Cu alloy

  • Popis výsledku anglicky

    Ultrafine-grained Al-9%Si-3%Cu alloy was achieved by a combination of laser powder bed fusion (LPBF) additive manufacturing and high-pressure torsion (HPT) processing in this investigation. The alloy was initially deposited layer-by-layer using a bi-directional scan strategy in LPBF with a scan rate of 1000 mms-1, a layer thickness of 40 mu m and a hatch spacing of 200 mu m, leading to a melt pool morphology with an average width of 150 mu m and differing lengths. This led to a grain size of 722 nm and a dislocation density of 1.1 x 1014 m-2. This as-deposited alloy was then processed using HPT at room temperature using an applied pressure of 6.0 GPa and at a speed of one revolution per minute for different numbers of turns: half, one, five and ten turns. The alloy after HPT processing showed ultrafine grains with a grain size of 66 nm, well-dispersed nanosized intermetallic particles with sizes of 50-90 nm, the disappearance of the pool morphology and a notable dislocation density of about 6.2 x 1014 m-2 for the ten turns HPT-processed alloy. The as-deposited and subsequently HPT-processed samples were tensile tested at 298 and 573 K at different strain rates between 10-4 and 10-1 s-1. The elongation-to-failure and tensile strength were recorded and the fracture surfaces were also inspected using scanning electron microscopy and then correlated with the manufacturing, processing and tensile testing conditions. The alloy performance in tensile testing has been evaluated at ambient and elevated temperatures in terms of structural evolution and fractography for the first time. Ultrafine alpha-aluminium grains and nanosized eutectic silicon particles obtained by room temperature HPT-processing of the alloy have significantly improved the mechanical properties and microstructural stability at ambient and elevated testing temperatures for the HPT-processed additively manufactured alloy compared to the as-deposited additively manufactured and counterpart conventional alloys. The HPT-processed tensile samples showed a significant tensile strength of 700 MPa at 298 K and elongation-to-failure of 220% at 573 K, which is higher than that seen in the as-deposited tensile samples where 400 MPa and 106% are observed under the same testing conditions. Fractographic observations demonstrated that mixed brittle and shear ductile fractures dominated in the as-deposited tensile samples at 298 K, and tension ductile fracture dominated at 573 K. However, the HPT-processed tensile samples exhibited tension ductile and shear ductile fractures at 298 K, and tension ductile fracture at 573 K. The ultrafine-grained microstructure produced by the HPT application in the LBPF-manufactured alloy controls effectively the fracture mechanisms, dimple morphology and thus strength and elongation in comparison with the as-deposited additively manufactured microstructure.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    20501 - Materials engineering

Návaznosti výsledku

  • Projekt

  • Návaznosti

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Ostatní

  • Rok uplatnění

    2024

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    MATERIALS SCIENCE AND TECHNOLOGY

  • ISSN

    0267-0836

  • e-ISSN

    1743-2847

  • Svazek periodika

    neuveden

  • Číslo periodika v rámci svazku

    JUN 2024

  • Stát vydavatele periodika

    US - Spojené státy americké

  • Počet stran výsledku

    22

  • Strana od-do

    nestránkováno

  • Kód UT WoS článku

    001249114200001

  • EID výsledku v databázi Scopus

    2-s2.0-85196379356