Using physics-informed neural networks to predict the lifetime of laser powder bed fusion processed 316L stainless steel under multiaxial low-cycle fatigue loading
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F26316919%3A_____%2F24%3AN0000010" target="_blank" >RIV/26316919:_____/24:N0000010 - isvavai.cz</a>
Výsledek na webu
<a href="https://www-sciencedirect-com.ezproxy.techlib.cz/science/article/pii/S0142112324004675?via%3Dihub" target="_blank" >https://www-sciencedirect-com.ezproxy.techlib.cz/science/article/pii/S0142112324004675?via%3Dihub</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.ijfatigue.2024.108608" target="_blank" >10.1016/j.ijfatigue.2024.108608</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Using physics-informed neural networks to predict the lifetime of laser powder bed fusion processed 316L stainless steel under multiaxial low-cycle fatigue loading
Popis výsledku v původním jazyce
Axial-torsional Low-Cycle Fatigue (LCF) tests were conducted under strain control on Additively Manufactured (AM) 316L stainless steel using laser powder bed fusion. The tests covered various strain amplitudes tension-compression, proportional, and pure shear loading paths. The AM 316L stainless steel exhibited softening and transgranular cracking under all the investigated loading conditions. The presence of deposition defects, predominantly the lack of fusion type, was identified as the main factor influencing the crack initiation and propagation, as well as the scatter in the fatigue lifetime. Therefore, to account for the damaging of these deposition related defects on fatigue lifetime, a novel physics-informed neural network was proposed. Subsequently, this neural network was combined with the critical plane approach, based on the tensile of failure, in order to predict the lifetime of AM 316L stainless steel. The predicted data exhibited correlation with the experimental results.
Název v anglickém jazyce
Using physics-informed neural networks to predict the lifetime of laser powder bed fusion processed 316L stainless steel under multiaxial low-cycle fatigue loading
Popis výsledku anglicky
Axial-torsional Low-Cycle Fatigue (LCF) tests were conducted under strain control on Additively Manufactured (AM) 316L stainless steel using laser powder bed fusion. The tests covered various strain amplitudes tension-compression, proportional, and pure shear loading paths. The AM 316L stainless steel exhibited softening and transgranular cracking under all the investigated loading conditions. The presence of deposition defects, predominantly the lack of fusion type, was identified as the main factor influencing the crack initiation and propagation, as well as the scatter in the fatigue lifetime. Therefore, to account for the damaging of these deposition related defects on fatigue lifetime, a novel physics-informed neural network was proposed. Subsequently, this neural network was combined with the critical plane approach, based on the tensile of failure, in order to predict the lifetime of AM 316L stainless steel. The predicted data exhibited correlation with the experimental results.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
20501 - Materials engineering
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2024
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
INTERNATIONAL JOURNAL OF FATIGUE
ISSN
0142-1123
e-ISSN
1879-3452
Svazek periodika
190
Číslo periodika v rámci svazku
JAN 2025
Stát vydavatele periodika
GB - Spojené království Velké Británie a Severního Irska
Počet stran výsledku
14
Strana od-do
nestránkováno
Kód UT WoS článku
001322093600001
EID výsledku v databázi Scopus
2-s2.0-85204448639