Forecasting Czech GDP using Bayesian dynamic model averaging EL Classification
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F26482789%3A_____%2F18%3AN0000003" target="_blank" >RIV/26482789:_____/18:N0000003 - isvavai.cz</a>
Výsledek na webu
<a href="https://iises.net/international-journal-of-economic-sciences/publication-detail-1721" target="_blank" >https://iises.net/international-journal-of-economic-sciences/publication-detail-1721</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.20472/ES.2018.7.1.004" target="_blank" >10.20472/ES.2018.7.1.004</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Forecasting Czech GDP using Bayesian dynamic model averaging EL Classification
Popis výsledku v původním jazyce
Forecasting future path of macroeconomic aggregates has become crucial for monetary and fiscal policymakers. Using Czech data, the aim of this paper is to demonstrate the benefits of the Bayesian dynamic averaging and Bayesian Vector Autoregressive Models (BVAR) in forecasting real GDP growth. Estimation of richly parameterized VARs often leads to unstable estimates and inaccurate forecasts in models with many variables. Bayesian inference and proper choice of informative priors offers an effective solution to this problem by shrinking the variance of model parameters. Bayesian dynamic model averaging (DMA) then makes it possible to account for model uncertainty by combining predictive abilities of many competing VAR models considered by a researcher. Since forecasting performance of individual models may vary over time, the DMA can adapt their weights in dynamic and optimal way. It is shown that the application of DMA leads to substantial forecasting gains in forecasting Czech real GDP.
Název v anglickém jazyce
Forecasting Czech GDP using Bayesian dynamic model averaging EL Classification
Popis výsledku anglicky
Forecasting future path of macroeconomic aggregates has become crucial for monetary and fiscal policymakers. Using Czech data, the aim of this paper is to demonstrate the benefits of the Bayesian dynamic averaging and Bayesian Vector Autoregressive Models (BVAR) in forecasting real GDP growth. Estimation of richly parameterized VARs often leads to unstable estimates and inaccurate forecasts in models with many variables. Bayesian inference and proper choice of informative priors offers an effective solution to this problem by shrinking the variance of model parameters. Bayesian dynamic model averaging (DMA) then makes it possible to account for model uncertainty by combining predictive abilities of many competing VAR models considered by a researcher. Since forecasting performance of individual models may vary over time, the DMA can adapt their weights in dynamic and optimal way. It is shown that the application of DMA leads to substantial forecasting gains in forecasting Czech real GDP.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
50206 - Finance
Návaznosti výsledku
Projekt
—
Návaznosti
N - Vyzkumna aktivita podporovana z neverejnych zdroju
Ostatní
Rok uplatnění
2018
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
International Journal of Economic Sciences
ISSN
1804-9796
e-ISSN
—
Svazek periodika
7/2018
Číslo periodika v rámci svazku
1
Stát vydavatele periodika
CZ - Česká republika
Počet stran výsledku
17
Strana od-do
65-81
Kód UT WoS článku
000432932500004
EID výsledku v databázi Scopus
—