Computational thermal fluid dynamic analysis of Hypervapotron heat sink for high heat flux devices application
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F26722445%3A_____%2F15%3A%230001059" target="_blank" >RIV/26722445:_____/15:#0001059 - isvavai.cz</a>
Výsledek na webu
<a href="http://dx.doi.org/10.1016/j.fusengdes.2015.02.017" target="_blank" >http://dx.doi.org/10.1016/j.fusengdes.2015.02.017</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.fusengdes.2015.02.017" target="_blank" >10.1016/j.fusengdes.2015.02.017</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Computational thermal fluid dynamic analysis of Hypervapotron heat sink for high heat flux devices application
Popis výsledku v původním jazyce
In fusion devices, plasma is the environment in which light elements fuse producing energy. More than 20% of this power reaches the surface of plasma facing components (e.g. the divertor targets, first wall), where the heat flux local value can be several MW/m(2). In order to handle such heat fluxes several coolants are proposed such as water, helium and liquid metals along with different heat sink devices, such as Swirl tubes, Hypervapotrons, Jet cooling, Pin-fins, etc. Among these, Hypervapotron concept, operating in highly subcooled boiling regime with water as a coolant is considered as one of the potential candidates. In this paper, a Computational Fluid Dynamic (CFD) approach is used to analyze the boiling flow inside Hypervapotron channel usingtwo different boiling models: Rohsenow boiling model and Transition boiling model, these models are available in the commercial CFD code STARCCM+, and uses Volume of Fluid approach for the multiphase flow analysis. They are benchmarked us
Název v anglickém jazyce
Computational thermal fluid dynamic analysis of Hypervapotron heat sink for high heat flux devices application
Popis výsledku anglicky
In fusion devices, plasma is the environment in which light elements fuse producing energy. More than 20% of this power reaches the surface of plasma facing components (e.g. the divertor targets, first wall), where the heat flux local value can be several MW/m(2). In order to handle such heat fluxes several coolants are proposed such as water, helium and liquid metals along with different heat sink devices, such as Swirl tubes, Hypervapotrons, Jet cooling, Pin-fins, etc. Among these, Hypervapotron concept, operating in highly subcooled boiling regime with water as a coolant is considered as one of the potential candidates. In this paper, a Computational Fluid Dynamic (CFD) approach is used to analyze the boiling flow inside Hypervapotron channel usingtwo different boiling models: Rohsenow boiling model and Transition boiling model, these models are available in the commercial CFD code STARCCM+, and uses Volume of Fluid approach for the multiphase flow analysis. They are benchmarked us
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
20305 - Nuclear related engineering; (nuclear physics to be 1.3);
Návaznosti výsledku
Projekt
Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2015
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Fusion Engineering and Design
ISSN
0920-3796
e-ISSN
—
Svazek periodika
98-99
Číslo periodika v rámci svazku
B
Stát vydavatele periodika
CH - Švýcarská konfederace
Počet stran výsledku
4
Strana od-do
1267-1270
Kód UT WoS článku
000363344900048
EID výsledku v databázi Scopus
—