Zr alloy protection against high-temperature oxidation: Coating by a double-layered structure with active and passive functional properties
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F26722445%3A_____%2F19%3AN0000052" target="_blank" >RIV/26722445:_____/19:N0000052 - isvavai.cz</a>
Výsledek na webu
<a href="https://www.sciencedirect.com/science/article/pii/S0010938X19316646" target="_blank" >https://www.sciencedirect.com/science/article/pii/S0010938X19316646</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.corsci.2019.108270" target="_blank" >10.1016/j.corsci.2019.108270</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Zr alloy protection against high-temperature oxidation: Coating by a double-layered structure with active and passive functional properties
Popis výsledku v původním jazyce
In this work, a new concept of metal surface protection against degradation caused by high-temperature oxidation in water environment is presented. We were the first to create a double-layered coating consisting of an active and passive part to protect Zr alloy surface against high-temperature oxidation in a hot water environment. We investigated the hot steam corrosion of ZIRLO fuel cladding coated with a double layer consisting of 500 run nanocrystalline diamond (NCD) as the bottom layer and 2 gm chromium-aluminum-silicon nitride (CrAlSiN) as the upper layer. Coated and uncoated ZIRLO samples were exposed for 4 days at 400 degrees C in an autoclave and for 60 min at 1000 degrees C (nuclear reactor accident temperature) in a hot steam furnace. We have shown that the NCD coating protects the Zr alloy surface against oxidation in an active way: carbon from NCD layer enters the Zr alloy surface and, by changing the physical and chemical properties of the Zr cladding tube surface, limits the Zr oxidation process. In contrast, the passive CrAlSiN coating prevents the Zr cladding tube surface from coming into physical contact with the hot steam. The advantages of the double layer were demonstrated, particularly in terms of hot (accident-temperature) oxidation kinetics: in the initial stage, CrAlSiN layer with low number of defects acts as an impermeable barrier. But after a longer time (more than 20 min) the protection by more cracked CrAlSiN decreases. At the same time, the carbon from NCD strongly penetrates the Zr cladding surface and worsen conditions for Zr oxidation. For the double-layer coating, the underlying NCD layer mitigates thermal expansion, reducing cracks and defects in upper layer CrAlSiN.
Název v anglickém jazyce
Zr alloy protection against high-temperature oxidation: Coating by a double-layered structure with active and passive functional properties
Popis výsledku anglicky
In this work, a new concept of metal surface protection against degradation caused by high-temperature oxidation in water environment is presented. We were the first to create a double-layered coating consisting of an active and passive part to protect Zr alloy surface against high-temperature oxidation in a hot water environment. We investigated the hot steam corrosion of ZIRLO fuel cladding coated with a double layer consisting of 500 run nanocrystalline diamond (NCD) as the bottom layer and 2 gm chromium-aluminum-silicon nitride (CrAlSiN) as the upper layer. Coated and uncoated ZIRLO samples were exposed for 4 days at 400 degrees C in an autoclave and for 60 min at 1000 degrees C (nuclear reactor accident temperature) in a hot steam furnace. We have shown that the NCD coating protects the Zr alloy surface against oxidation in an active way: carbon from NCD layer enters the Zr alloy surface and, by changing the physical and chemical properties of the Zr cladding tube surface, limits the Zr oxidation process. In contrast, the passive CrAlSiN coating prevents the Zr cladding tube surface from coming into physical contact with the hot steam. The advantages of the double layer were demonstrated, particularly in terms of hot (accident-temperature) oxidation kinetics: in the initial stage, CrAlSiN layer with low number of defects acts as an impermeable barrier. But after a longer time (more than 20 min) the protection by more cracked CrAlSiN decreases. At the same time, the carbon from NCD strongly penetrates the Zr cladding surface and worsen conditions for Zr oxidation. For the double-layer coating, the underlying NCD layer mitigates thermal expansion, reducing cracks and defects in upper layer CrAlSiN.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
20501 - Materials engineering
Návaznosti výsledku
Projekt
Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2019
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Corrosion Science
ISSN
0010-938X
e-ISSN
1879-0496
Svazek periodika
163
Číslo periodika v rámci svazku
February
Stát vydavatele periodika
GB - Spojené království Velké Británie a Severního Irska
Počet stran výsledku
22
Strana od-do
1-22
Kód UT WoS článku
000513295700038
EID výsledku v databázi Scopus
2-s2.0-85076047855