Development and testing of multicomponent fuel cladding with enhanced accidental performance
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F26722445%3A_____%2F20%3AN0000020" target="_blank" >RIV/26722445:_____/20:N0000020 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/68407700:21220/20:00333943 RIV/68407700:21340/20:00333943
Výsledek na webu
<a href="https://www.journals.elsevier.com/nuclear-engineering-and-technology/" target="_blank" >https://www.journals.elsevier.com/nuclear-engineering-and-technology/</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.net.2019.08.015" target="_blank" >10.1016/j.net.2019.08.015</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Development and testing of multicomponent fuel cladding with enhanced accidental performance
Popis výsledku v původním jazyce
Accident Tolerant Fuels have been widely studied since the Fukushima-Daiichi accident in 2011 as one of the options on how to further enhance the safety of nuclear power plants. Deposition of protective coatings on nuclear fuel claddings has been considered as a near-term concept that will reduce the high-temperature oxidation rate and enhance accidental tolerance of the cladding while providing additional benefits during normal operation and transients. This study focuses on experimental testing of Zr-based alloys coated with Cr-based coatings using Physical Vapour Deposition. The results of long-term corrosion tests, as well as tests simulating postulated accidents, are presented. Zr-1%Nb alloy used as nuclear fuel cladding serves as a substrate and Cr, CrN, CrxNy layers are deposited by unbalanced magnetron sputtering and reactive magnetron sputtering. The deposition procedures are optimized in order to improve coating properties. Coated as well as reference uncoated samples were experimentally tested. The presented results include standard long-term corrosion tests at 360 degrees C in WWER water chemistry, burst (creep) tests and mainly single and double-sided high-temperature steam oxidation tests between 1000 and 1400 degrees C related to postulated Loss-of-coolant accident and Design extension conditions. Coated and reference samples were characterized pre- and post-testing using mechanical testing (microhardness, ring compression test), Thermal Evolved Gas Analysis analysis (hydrogen, oxygen concentration), optical microscopy, scanning electron microscopy (EDS, WDS, EBSD) and X-ray diffraction.
Název v anglickém jazyce
Development and testing of multicomponent fuel cladding with enhanced accidental performance
Popis výsledku anglicky
Accident Tolerant Fuels have been widely studied since the Fukushima-Daiichi accident in 2011 as one of the options on how to further enhance the safety of nuclear power plants. Deposition of protective coatings on nuclear fuel claddings has been considered as a near-term concept that will reduce the high-temperature oxidation rate and enhance accidental tolerance of the cladding while providing additional benefits during normal operation and transients. This study focuses on experimental testing of Zr-based alloys coated with Cr-based coatings using Physical Vapour Deposition. The results of long-term corrosion tests, as well as tests simulating postulated accidents, are presented. Zr-1%Nb alloy used as nuclear fuel cladding serves as a substrate and Cr, CrN, CrxNy layers are deposited by unbalanced magnetron sputtering and reactive magnetron sputtering. The deposition procedures are optimized in order to improve coating properties. Coated as well as reference uncoated samples were experimentally tested. The presented results include standard long-term corrosion tests at 360 degrees C in WWER water chemistry, burst (creep) tests and mainly single and double-sided high-temperature steam oxidation tests between 1000 and 1400 degrees C related to postulated Loss-of-coolant accident and Design extension conditions. Coated and reference samples were characterized pre- and post-testing using mechanical testing (microhardness, ring compression test), Thermal Evolved Gas Analysis analysis (hydrogen, oxygen concentration), optical microscopy, scanning electron microscopy (EDS, WDS, EBSD) and X-ray diffraction.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
20305 - Nuclear related engineering; (nuclear physics to be 1.3);
Návaznosti výsledku
Projekt
Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2020
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Nuclear Engineering and Technology
ISSN
1738-5733
e-ISSN
—
Svazek periodika
52
Číslo periodika v rámci svazku
3
Stát vydavatele periodika
KR - Korejská republika
Počet stran výsledku
13
Strana od-do
597-609
Kód UT WoS článku
000516803800017
EID výsledku v databázi Scopus
2-s2.0-85071492736