Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Using genetic programming and the stress equilibrium method to obtain the un-stressed lattice parameter for calculating residual stresses

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F26722445%3A_____%2F23%3AN0000011" target="_blank" >RIV/26722445:_____/23:N0000011 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://www.sciencedirect.com/science/article/pii/S2238785423000455" target="_blank" >https://www.sciencedirect.com/science/article/pii/S2238785423000455</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1016/j.jmrt.2023.01.045" target="_blank" >10.1016/j.jmrt.2023.01.045</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Using genetic programming and the stress equilibrium method to obtain the un-stressed lattice parameter for calculating residual stresses

  • Popis výsledku v původním jazyce

    While it is known that the crucial requirement for investigating residual stresses using diffraction is the use of a reliable unstressed lattice parameter, the robustness of genetic programming to accomplish this task will be shown here. The parameter obtained from genetic programming in the context of the stress equilibrium method is compared with values resulting from other approaches of this method. This gives support and strength to the use of genetic programming to investigate microscopic residual stresses from real, experimental information. This is, so far, absent in theoretical models recently proposed.Whereas residual stress fields determination by diffraction methods at a macroscopic scale (scale of the sample size) offers no serious difficulties, the stress determination at the microscopic scale (i.e., stresses varying among neighboring grains) is still a pending task. Understanding these microscopic stresses is, however, of a great technological importance, as they may be the cause of fatigue damage and/or stress corrosion cracking in many structural components. Despite that theoretical but solid alternatives, for example those based on phase field models, are being used to unveil the stresses developed at the grain scale after known thermo-mechanical treatments, the results obtained still need to be assessed by experimental results linked to real microstructures. On the contrary, recent works propose the use of genetic programming approaches to investigate these micro-scopic stresses on the basis of data recorded from real stressed samples; specifically, fromneutron diffraction and detailed knowledge of the microstructure and its characteristics; e.g., the texture gradient developed.

  • Název v anglickém jazyce

    Using genetic programming and the stress equilibrium method to obtain the un-stressed lattice parameter for calculating residual stresses

  • Popis výsledku anglicky

    While it is known that the crucial requirement for investigating residual stresses using diffraction is the use of a reliable unstressed lattice parameter, the robustness of genetic programming to accomplish this task will be shown here. The parameter obtained from genetic programming in the context of the stress equilibrium method is compared with values resulting from other approaches of this method. This gives support and strength to the use of genetic programming to investigate microscopic residual stresses from real, experimental information. This is, so far, absent in theoretical models recently proposed.Whereas residual stress fields determination by diffraction methods at a macroscopic scale (scale of the sample size) offers no serious difficulties, the stress determination at the microscopic scale (i.e., stresses varying among neighboring grains) is still a pending task. Understanding these microscopic stresses is, however, of a great technological importance, as they may be the cause of fatigue damage and/or stress corrosion cracking in many structural components. Despite that theoretical but solid alternatives, for example those based on phase field models, are being used to unveil the stresses developed at the grain scale after known thermo-mechanical treatments, the results obtained still need to be assessed by experimental results linked to real microstructures. On the contrary, recent works propose the use of genetic programming approaches to investigate these micro-scopic stresses on the basis of data recorded from real stressed samples; specifically, fromneutron diffraction and detailed knowledge of the microstructure and its characteristics; e.g., the texture gradient developed.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    20501 - Materials engineering

Návaznosti výsledku

  • Projekt

  • Návaznosti

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Ostatní

  • Rok uplatnění

    2023

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Journal of Materials research and Technology

  • ISSN

    2238-7854

  • e-ISSN

    2214-0697

  • Svazek periodika

    23

  • Číslo periodika v rámci svazku

    March-April

  • Stát vydavatele periodika

    NL - Nizozemsko

  • Počet stran výsledku

    6

  • Strana od-do

    1543-1558

  • Kód UT WoS článku

    000963870000001

  • EID výsledku v databázi Scopus

    2-s2.0-85149684009