Using genetic programming and the stress equilibrium method to obtain the un-stressed lattice parameter for calculating residual stresses
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F26722445%3A_____%2F23%3AN0000011" target="_blank" >RIV/26722445:_____/23:N0000011 - isvavai.cz</a>
Výsledek na webu
<a href="https://www.sciencedirect.com/science/article/pii/S2238785423000455" target="_blank" >https://www.sciencedirect.com/science/article/pii/S2238785423000455</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.jmrt.2023.01.045" target="_blank" >10.1016/j.jmrt.2023.01.045</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Using genetic programming and the stress equilibrium method to obtain the un-stressed lattice parameter for calculating residual stresses
Popis výsledku v původním jazyce
While it is known that the crucial requirement for investigating residual stresses using diffraction is the use of a reliable unstressed lattice parameter, the robustness of genetic programming to accomplish this task will be shown here. The parameter obtained from genetic programming in the context of the stress equilibrium method is compared with values resulting from other approaches of this method. This gives support and strength to the use of genetic programming to investigate microscopic residual stresses from real, experimental information. This is, so far, absent in theoretical models recently proposed.Whereas residual stress fields determination by diffraction methods at a macroscopic scale (scale of the sample size) offers no serious difficulties, the stress determination at the microscopic scale (i.e., stresses varying among neighboring grains) is still a pending task. Understanding these microscopic stresses is, however, of a great technological importance, as they may be the cause of fatigue damage and/or stress corrosion cracking in many structural components. Despite that theoretical but solid alternatives, for example those based on phase field models, are being used to unveil the stresses developed at the grain scale after known thermo-mechanical treatments, the results obtained still need to be assessed by experimental results linked to real microstructures. On the contrary, recent works propose the use of genetic programming approaches to investigate these micro-scopic stresses on the basis of data recorded from real stressed samples; specifically, fromneutron diffraction and detailed knowledge of the microstructure and its characteristics; e.g., the texture gradient developed.
Název v anglickém jazyce
Using genetic programming and the stress equilibrium method to obtain the un-stressed lattice parameter for calculating residual stresses
Popis výsledku anglicky
While it is known that the crucial requirement for investigating residual stresses using diffraction is the use of a reliable unstressed lattice parameter, the robustness of genetic programming to accomplish this task will be shown here. The parameter obtained from genetic programming in the context of the stress equilibrium method is compared with values resulting from other approaches of this method. This gives support and strength to the use of genetic programming to investigate microscopic residual stresses from real, experimental information. This is, so far, absent in theoretical models recently proposed.Whereas residual stress fields determination by diffraction methods at a macroscopic scale (scale of the sample size) offers no serious difficulties, the stress determination at the microscopic scale (i.e., stresses varying among neighboring grains) is still a pending task. Understanding these microscopic stresses is, however, of a great technological importance, as they may be the cause of fatigue damage and/or stress corrosion cracking in many structural components. Despite that theoretical but solid alternatives, for example those based on phase field models, are being used to unveil the stresses developed at the grain scale after known thermo-mechanical treatments, the results obtained still need to be assessed by experimental results linked to real microstructures. On the contrary, recent works propose the use of genetic programming approaches to investigate these micro-scopic stresses on the basis of data recorded from real stressed samples; specifically, fromneutron diffraction and detailed knowledge of the microstructure and its characteristics; e.g., the texture gradient developed.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
20501 - Materials engineering
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2023
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Journal of Materials research and Technology
ISSN
2238-7854
e-ISSN
2214-0697
Svazek periodika
23
Číslo periodika v rámci svazku
March-April
Stát vydavatele periodika
NL - Nizozemsko
Počet stran výsledku
6
Strana od-do
1543-1558
Kód UT WoS článku
000963870000001
EID výsledku v databázi Scopus
2-s2.0-85149684009