SubChanFlow and VIPRE codes benchmark for VVER-1000
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F26722445%3A_____%2F24%3AN0000052" target="_blank" >RIV/26722445:_____/24:N0000052 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/46356088:_____/24:N0000020 RIV/86652052:_____/24:N0000020
Výsledek na webu
<a href="https://www.sciencedirect.com/science/article/pii/S0029549324000384" target="_blank" >https://www.sciencedirect.com/science/article/pii/S0029549324000384</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.nucengdes.2024.112936" target="_blank" >10.1016/j.nucengdes.2024.112936</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
SubChanFlow and VIPRE codes benchmark for VVER-1000
Popis výsledku v původním jazyce
Computational codes that simulate steady -states and transients in nuclear reactors are key to supporting the safety of nuclear power plants not only for today's, but also for future projects, such as SMRs. At the same time, they contribute to increasing efficiency by using the project reserves of power plants. Computational tools perform simulation of various physical phenomena of a nuclear reactor. One of the advanced simulation tools are subchannel codes. The subchannel analysis approach is a proven method for the determination of safety criteria margins, resulting in key thermohydraulic parameters of the nuclear reactor, such as the departure from the nucleate boiling ratio. This research simulated a steady state and transient event (loss of flow accident) in the pressurized water reactor VVER-1000, using the codes SubChanFlow 3.5 and VIPRE-01 for one fuel assembly. The results were subsequently compared as a benchmark. Boundary conditions were calculated using data from the VVER-1000 nuclear power plant model in TRACE code. In general, SubChanFlow has been shown to be more conservative than VIPRE and can be used to evaluate and compare future analysis of various transients. Two independent models were developed to simulate the LOFA scenario, taking into account code differences. In general, the differences in the results can be explained by the different approaches of the crossflow models in the subchannel codes. Nevertheless, the departure from nucleate boiling ratio was calculated using the OKB correlation and the results did not exceed the safety limit criteria.
Název v anglickém jazyce
SubChanFlow and VIPRE codes benchmark for VVER-1000
Popis výsledku anglicky
Computational codes that simulate steady -states and transients in nuclear reactors are key to supporting the safety of nuclear power plants not only for today's, but also for future projects, such as SMRs. At the same time, they contribute to increasing efficiency by using the project reserves of power plants. Computational tools perform simulation of various physical phenomena of a nuclear reactor. One of the advanced simulation tools are subchannel codes. The subchannel analysis approach is a proven method for the determination of safety criteria margins, resulting in key thermohydraulic parameters of the nuclear reactor, such as the departure from the nucleate boiling ratio. This research simulated a steady state and transient event (loss of flow accident) in the pressurized water reactor VVER-1000, using the codes SubChanFlow 3.5 and VIPRE-01 for one fuel assembly. The results were subsequently compared as a benchmark. Boundary conditions were calculated using data from the VVER-1000 nuclear power plant model in TRACE code. In general, SubChanFlow has been shown to be more conservative than VIPRE and can be used to evaluate and compare future analysis of various transients. Two independent models were developed to simulate the LOFA scenario, taking into account code differences. In general, the differences in the results can be explained by the different approaches of the crossflow models in the subchannel codes. Nevertheless, the departure from nucleate boiling ratio was calculated using the OKB correlation and the results did not exceed the safety limit criteria.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
20305 - Nuclear related engineering; (nuclear physics to be 1.3);
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2024
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Nuclear Engineering and Design
ISSN
0029-5493
e-ISSN
1872-759X
Svazek periodika
418
Číslo periodika v rámci svazku
March
Stát vydavatele periodika
CH - Švýcarská konfederace
Počet stran výsledku
7
Strana od-do
1-7
Kód UT WoS článku
001170675900001
EID výsledku v databázi Scopus
2-s2.0-85183457456