Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

SubChanFlow and VIPRE codes benchmark for VVER-1000

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F26722445%3A_____%2F24%3AN0000052" target="_blank" >RIV/26722445:_____/24:N0000052 - isvavai.cz</a>

  • Nalezeny alternativní kódy

    RIV/46356088:_____/24:N0000020 RIV/86652052:_____/24:N0000020

  • Výsledek na webu

    <a href="https://www.sciencedirect.com/science/article/pii/S0029549324000384" target="_blank" >https://www.sciencedirect.com/science/article/pii/S0029549324000384</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1016/j.nucengdes.2024.112936" target="_blank" >10.1016/j.nucengdes.2024.112936</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    SubChanFlow and VIPRE codes benchmark for VVER-1000

  • Popis výsledku v původním jazyce

    Computational codes that simulate steady -states and transients in nuclear reactors are key to supporting the safety of nuclear power plants not only for today's, but also for future projects, such as SMRs. At the same time, they contribute to increasing efficiency by using the project reserves of power plants. Computational tools perform simulation of various physical phenomena of a nuclear reactor. One of the advanced simulation tools are subchannel codes. The subchannel analysis approach is a proven method for the determination of safety criteria margins, resulting in key thermohydraulic parameters of the nuclear reactor, such as the departure from the nucleate boiling ratio. This research simulated a steady state and transient event (loss of flow accident) in the pressurized water reactor VVER-1000, using the codes SubChanFlow 3.5 and VIPRE-01 for one fuel assembly. The results were subsequently compared as a benchmark. Boundary conditions were calculated using data from the VVER-1000 nuclear power plant model in TRACE code. In general, SubChanFlow has been shown to be more conservative than VIPRE and can be used to evaluate and compare future analysis of various transients. Two independent models were developed to simulate the LOFA scenario, taking into account code differences. In general, the differences in the results can be explained by the different approaches of the crossflow models in the subchannel codes. Nevertheless, the departure from nucleate boiling ratio was calculated using the OKB correlation and the results did not exceed the safety limit criteria.

  • Název v anglickém jazyce

    SubChanFlow and VIPRE codes benchmark for VVER-1000

  • Popis výsledku anglicky

    Computational codes that simulate steady -states and transients in nuclear reactors are key to supporting the safety of nuclear power plants not only for today's, but also for future projects, such as SMRs. At the same time, they contribute to increasing efficiency by using the project reserves of power plants. Computational tools perform simulation of various physical phenomena of a nuclear reactor. One of the advanced simulation tools are subchannel codes. The subchannel analysis approach is a proven method for the determination of safety criteria margins, resulting in key thermohydraulic parameters of the nuclear reactor, such as the departure from the nucleate boiling ratio. This research simulated a steady state and transient event (loss of flow accident) in the pressurized water reactor VVER-1000, using the codes SubChanFlow 3.5 and VIPRE-01 for one fuel assembly. The results were subsequently compared as a benchmark. Boundary conditions were calculated using data from the VVER-1000 nuclear power plant model in TRACE code. In general, SubChanFlow has been shown to be more conservative than VIPRE and can be used to evaluate and compare future analysis of various transients. Two independent models were developed to simulate the LOFA scenario, taking into account code differences. In general, the differences in the results can be explained by the different approaches of the crossflow models in the subchannel codes. Nevertheless, the departure from nucleate boiling ratio was calculated using the OKB correlation and the results did not exceed the safety limit criteria.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    20305 - Nuclear related engineering; (nuclear physics to be 1.3);

Návaznosti výsledku

  • Projekt

  • Návaznosti

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Ostatní

  • Rok uplatnění

    2024

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Nuclear Engineering and Design

  • ISSN

    0029-5493

  • e-ISSN

    1872-759X

  • Svazek periodika

    418

  • Číslo periodika v rámci svazku

    March

  • Stát vydavatele periodika

    CH - Švýcarská konfederace

  • Počet stran výsledku

    7

  • Strana od-do

    1-7

  • Kód UT WoS článku

    001170675900001

  • EID výsledku v databázi Scopus

    2-s2.0-85183457456