The role of flow structures in the effective removal of NOx pollutants by a TiO2-based coating in a street canyon
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F26763842%3A_____%2F23%3AN0000001" target="_blank" >RIV/26763842:_____/23:N0000001 - isvavai.cz</a>
Výsledek na webu
<a href="https://www.sciencedirect.com/science/article/pii/S2213343723004979?via%3Dihub" target="_blank" >https://www.sciencedirect.com/science/article/pii/S2213343723004979?via%3Dihub</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.jece.2023.109758" target="_blank" >10.1016/j.jece.2023.109758</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
The role of flow structures in the effective removal of NOx pollutants by a TiO2-based coating in a street canyon
Popis výsledku v původním jazyce
Photocatalytic titanium dioxide (TiO2) coatings are known to effectively remove harmful nitrogen oxides (NOx) in so-called laminar flow reactors (LFRs). However, their effectiveness in turbulent flow environments, such as street canyons, is not well understood. In this study, we applied physical modelling principles to simulate NOx photocatalysis on the walls of a street canyon polluted by idealised traffic, and compared the results of this modelling with those of experiments in a standard LFR. The results show that the LFR is partially able to simulate photocatalysis in such a turbulent environment, but with about 18 times higher flow rate than recommended in the standards (3 l min−1). However, the results from the street canyon experiment show that the performance of the photocatalyst is spatially dependent due to the mean flow structures that develop in the canyon. The mean vertical recirculation transports the NOx pollutants from the line source first to the leeward wall and then to the windward wall, making the windward wall more favourable for pollutant removal. The secondary corner vortices that form at the bottom of the canyon increase the reaction time, so that NOx pollutants are removed more effectively (up to 33%) than at other locations in the canyon. In contrast, the lowest removal efficiencies were found at the leeward wall (6%), where pollutants are mainly advected from the traffic and have less contact with the wall. These results provide valuable insights into the effectiveness of photocatalytic coatings in turbulent flow environments and may be useful for the development and implementation of these coatings in realistic urban pollution scenarios.
Název v anglickém jazyce
The role of flow structures in the effective removal of NOx pollutants by a TiO2-based coating in a street canyon
Popis výsledku anglicky
Photocatalytic titanium dioxide (TiO2) coatings are known to effectively remove harmful nitrogen oxides (NOx) in so-called laminar flow reactors (LFRs). However, their effectiveness in turbulent flow environments, such as street canyons, is not well understood. In this study, we applied physical modelling principles to simulate NOx photocatalysis on the walls of a street canyon polluted by idealised traffic, and compared the results of this modelling with those of experiments in a standard LFR. The results show that the LFR is partially able to simulate photocatalysis in such a turbulent environment, but with about 18 times higher flow rate than recommended in the standards (3 l min−1). However, the results from the street canyon experiment show that the performance of the photocatalyst is spatially dependent due to the mean flow structures that develop in the canyon. The mean vertical recirculation transports the NOx pollutants from the line source first to the leeward wall and then to the windward wall, making the windward wall more favourable for pollutant removal. The secondary corner vortices that form at the bottom of the canyon increase the reaction time, so that NOx pollutants are removed more effectively (up to 33%) than at other locations in the canyon. In contrast, the lowest removal efficiencies were found at the leeward wall (6%), where pollutants are mainly advected from the traffic and have less contact with the wall. These results provide valuable insights into the effectiveness of photocatalytic coatings in turbulent flow environments and may be useful for the development and implementation of these coatings in realistic urban pollution scenarios.
Klasifikace
Druh
J<sub>SC</sub> - Článek v periodiku v databázi SCOPUS
CEP obor
—
OECD FORD obor
10403 - Physical chemistry
Návaznosti výsledku
Projekt
<a href="/cs/project/FV40209" target="_blank" >FV40209: Využití optimalizovaných fotokatalytických nanokompozitů pro odstraňování zdraví škodlivých látek ze vzduchu</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2023
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Journal of Environmental Chemical Engineering
ISSN
2213-3437
e-ISSN
—
Svazek periodika
11
Číslo periodika v rámci svazku
3
Stát vydavatele periodika
GB - Spojené království Velké Británie a Severního Irska
Počet stran výsledku
10
Strana od-do
109758
Kód UT WoS článku
—
EID výsledku v databázi Scopus
2-s2.0-85150780136