Bound Sets Approach to Impulsive Floquet Problems for Vector Second-Order Differential Inclusions
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F26867184%3A_____%2F24%3AN0000002" target="_blank" >RIV/26867184:_____/24:N0000002 - isvavai.cz</a>
Výsledek na webu
<a href="https://link.springer.com/article/10.1007/s12591-021-00586-4" target="_blank" >https://link.springer.com/article/10.1007/s12591-021-00586-4</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/s12591-021-00586-4" target="_blank" >10.1007/s12591-021-00586-4</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Bound Sets Approach to Impulsive Floquet Problems for Vector Second-Order Differential Inclusions
Popis výsledku v původním jazyce
In this paper, the existence and the localization of a solution of an impulsive vector multivalued second-order Floquet boundary value problem are investigated. The method used in the paper is based on the combination of a fixed point index technique with bound sets approach. At first, problems with upper-Carathéodory right-hand sides are investigated and it is shown afterwards how can the conditions be simplified in more regular case of upper semi-continuous right hand side. In this more regular case, the conditions ensuring the existence and the localization of a solution are put directly on the boundary of the considered bound set. This strict localization of the sufficient conditions is very significant since it allows some solutions to escape from the set of candidate solutions. In both cases, the C1 -bounding functions with locally Lipschitzian gradients are considered at first and it is shown afterwards how the conditions change in case of C2 -bounding functions. The paper concludes with an application of obtained results to Liénard-type equations and inclusions and the comparisons of our conclusions with the few results related to impulsive periodic and antiperiodic Liénard equations are obtained.
Název v anglickém jazyce
Bound Sets Approach to Impulsive Floquet Problems for Vector Second-Order Differential Inclusions
Popis výsledku anglicky
In this paper, the existence and the localization of a solution of an impulsive vector multivalued second-order Floquet boundary value problem are investigated. The method used in the paper is based on the combination of a fixed point index technique with bound sets approach. At first, problems with upper-Carathéodory right-hand sides are investigated and it is shown afterwards how can the conditions be simplified in more regular case of upper semi-continuous right hand side. In this more regular case, the conditions ensuring the existence and the localization of a solution are put directly on the boundary of the considered bound set. This strict localization of the sufficient conditions is very significant since it allows some solutions to escape from the set of candidate solutions. In both cases, the C1 -bounding functions with locally Lipschitzian gradients are considered at first and it is shown afterwards how the conditions change in case of C2 -bounding functions. The paper concludes with an application of obtained results to Liénard-type equations and inclusions and the comparisons of our conclusions with the few results related to impulsive periodic and antiperiodic Liénard equations are obtained.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10102 - Applied mathematics
Návaznosti výsledku
Projekt
—
Návaznosti
N - Vyzkumna aktivita podporovana z neverejnych zdroju
Ostatní
Rok uplatnění
2024
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Differential Equations and Dynamical Systems
ISSN
0971-3514
e-ISSN
—
Svazek periodika
30
Číslo periodika v rámci svazku
1
Stát vydavatele periodika
IN - Indická republika
Počet stran výsledku
21
Strana od-do
1-21
Kód UT WoS článku
000737089900001
EID výsledku v databázi Scopus
2-s2.0-85122131203