Experimental and Numerical Studies into the Cavitation Impact of the Hydrofoil Surface with Different Treatments
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F28645413%3A_____%2F22%3AN0000006" target="_blank" >RIV/28645413:_____/22:N0000006 - isvavai.cz</a>
Výsledek na webu
<a href="https://link.springer.com/article/10.1134/S0040601522060064" target="_blank" >https://link.springer.com/article/10.1134/S0040601522060064</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1134/S0040601522060064" target="_blank" >10.1134/S0040601522060064</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Experimental and Numerical Studies into the Cavitation Impact of the Hydrofoil Surface with Different Treatments
Popis výsledku v původním jazyce
The experimental and numerical investigation of unsteady cavitating flow around a NACA2412 hydrofoil with chemically treated surfaces is described. The study was focused on the influence of the surface wettability on the intensity of cavitation processes. Two steel hydrofoils whose surface is treated using different methods are compared with a hydrofoil having a nontreated surface. The first of the treated hydrofoils has a 50–70-µm thick wear-resistant hydrophobic coating of tungsten carbide applied by ion-plasma deposition in a vacuum chamber. The second hydrofoil has a coating of a surfactant, octodecyamine, applied by deposition while keeping the hydrofoil in an aqueous solution. The hydrofoil with the span/chord ratio of 1.25 was tested in the cavitation tunnel. The incidence angle of the hydrofoil to the incoming flow was 8°. Numerical results were obtained using the ANSYS CFX software package with the Zwart cavitation model and the SAS-SST turbulence model. The monitored pressure fluctuations and the level of noise generated by cavitation-induced unsteady processes are estimated. It is demonstrated that additional surface treatment can help prevent unwanted phenomena in the flow path caused by cavitation. This technique does not require expensive modernization of the flow path in hydraulic machines. Numerical simulations and experiments carried out by the authors suggest that surface treatment can considerably affect the cavitation processes, and the results of studies demonstrate the need for further in-depth investigation of cavitation processes in hydraulic machines, including with the use of modern application software tools.
Název v anglickém jazyce
Experimental and Numerical Studies into the Cavitation Impact of the Hydrofoil Surface with Different Treatments
Popis výsledku anglicky
The experimental and numerical investigation of unsteady cavitating flow around a NACA2412 hydrofoil with chemically treated surfaces is described. The study was focused on the influence of the surface wettability on the intensity of cavitation processes. Two steel hydrofoils whose surface is treated using different methods are compared with a hydrofoil having a nontreated surface. The first of the treated hydrofoils has a 50–70-µm thick wear-resistant hydrophobic coating of tungsten carbide applied by ion-plasma deposition in a vacuum chamber. The second hydrofoil has a coating of a surfactant, octodecyamine, applied by deposition while keeping the hydrofoil in an aqueous solution. The hydrofoil with the span/chord ratio of 1.25 was tested in the cavitation tunnel. The incidence angle of the hydrofoil to the incoming flow was 8°. Numerical results were obtained using the ANSYS CFX software package with the Zwart cavitation model and the SAS-SST turbulence model. The monitored pressure fluctuations and the level of noise generated by cavitation-induced unsteady processes are estimated. It is demonstrated that additional surface treatment can help prevent unwanted phenomena in the flow path caused by cavitation. This technique does not require expensive modernization of the flow path in hydraulic machines. Numerical simulations and experiments carried out by the authors suggest that surface treatment can considerably affect the cavitation processes, and the results of studies demonstrate the need for further in-depth investigation of cavitation processes in hydraulic machines, including with the use of modern application software tools.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
20302 - Applied mechanics
Návaznosti výsledku
Projekt
<a href="/cs/project/EF17_049%2F0008408" target="_blank" >EF17_049/0008408: Hydrodynamický design čerpadel</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2022
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Thermal Engineering
ISSN
0040-6015
e-ISSN
—
Svazek periodika
—
Číslo periodika v rámci svazku
69
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
10
Strana od-do
—
Kód UT WoS článku
000809175000003
EID výsledku v databázi Scopus
—