Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Handling simulation failures of a computationally expensive multiobjective optimization problem in pump design

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F28645413%3A_____%2F24%3AN0000006" target="_blank" >RIV/28645413:_____/24:N0000006 - isvavai.cz</a>

  • Nalezeny alternativní kódy

    RIV/61989592:15310/24:73628745

  • Výsledek na webu

    <a href="https://www.sciencedirect.com/science/article/pii/S0952197624010558?via%3Dihub" target="_blank" >https://www.sciencedirect.com/science/article/pii/S0952197624010558?via%3Dihub</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1016/j.engappai.2024.108897" target="_blank" >10.1016/j.engappai.2024.108897</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Handling simulation failures of a computationally expensive multiobjective optimization problem in pump design

  • Popis výsledku v původním jazyce

    Solving real-world optimization problems in engineering and design involves various practical challenges. They include simultaneously optimizing multiple conflicting objective functions that may involve computationally expensive simulations. Failed simulations introduce another practical challenge, as it is not always possible to set constraints a priori to avoid failed simulations. Failed simulations are typically ignored during optimization, which leads to wasting computation resources. When the optimization problem has multiple objective functions, failed simulations can also be misleading for the decision maker while choosing the most preferred solution. Utilizing data collected from previous simulations and enabling the optimization algorithm to avoid failed simulations can reduce the computational requirements. We consider data-driven multiobjective optimization of the diffusor of an axial pump and propose an approach to reduce the number of solutions that fail in expensive computational fluid dynamics simulations. The proposed approach utilizes Kriging surrogate models to approximate the objective functions and is inexpensive to evaluate. We utilize a probabilistic selection approach with constraints in a multiobjective evolutionary algorithm to find solutions with better objective function values, lower uncertainty, and lower probability of failing. Finally, a domain expert chooses the most preferred solution using one’s preferences. Numerical tests show significant improvement in the ratio of feasible solutions to all the available solutions without special treatment of failed simulations. The solutions also have a higher quality (hypervolume) and accuracy than the other tested approaches. The proposed approach provides an efficient way of reducing the number of failed simulations and utilizing offline data in multiobjective design optimization.

  • Název v anglickém jazyce

    Handling simulation failures of a computationally expensive multiobjective optimization problem in pump design

  • Popis výsledku anglicky

    Solving real-world optimization problems in engineering and design involves various practical challenges. They include simultaneously optimizing multiple conflicting objective functions that may involve computationally expensive simulations. Failed simulations introduce another practical challenge, as it is not always possible to set constraints a priori to avoid failed simulations. Failed simulations are typically ignored during optimization, which leads to wasting computation resources. When the optimization problem has multiple objective functions, failed simulations can also be misleading for the decision maker while choosing the most preferred solution. Utilizing data collected from previous simulations and enabling the optimization algorithm to avoid failed simulations can reduce the computational requirements. We consider data-driven multiobjective optimization of the diffusor of an axial pump and propose an approach to reduce the number of solutions that fail in expensive computational fluid dynamics simulations. The proposed approach utilizes Kriging surrogate models to approximate the objective functions and is inexpensive to evaluate. We utilize a probabilistic selection approach with constraints in a multiobjective evolutionary algorithm to find solutions with better objective function values, lower uncertainty, and lower probability of failing. Finally, a domain expert chooses the most preferred solution using one’s preferences. Numerical tests show significant improvement in the ratio of feasible solutions to all the available solutions without special treatment of failed simulations. The solutions also have a higher quality (hypervolume) and accuracy than the other tested approaches. The proposed approach provides an efficient way of reducing the number of failed simulations and utilizing offline data in multiobjective design optimization.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    20302 - Applied mechanics

Návaznosti výsledku

  • Projekt

    <a href="/cs/project/EF17_049%2F0008408" target="_blank" >EF17_049/0008408: Hydrodynamický design čerpadel</a><br>

  • Návaznosti

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Ostatní

  • Rok uplatnění

    2024

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Engineering Applications of Artificial Intelligence

  • ISSN

    0952-1976

  • e-ISSN

  • Svazek periodika

  • Číslo periodika v rámci svazku

    136 (A)

  • Stát vydavatele periodika

    GB - Spojené království Velké Británie a Severního Irska

  • Počet stran výsledku

    11

  • Strana od-do

  • Kód UT WoS článku

    001270782600001

  • EID výsledku v databázi Scopus

    2-s2.0-85198381837