DG Solver for the Simulation of Simplified Elastic Waves in Two-Dimensional Piecewise Homogeneous Media
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F29142890%3A_____%2F17%3AN0000011" target="_blank" >RIV/29142890:_____/17:N0000011 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/49777513:23210/17:43932217
Výsledek na webu
<a href="http://nnw.cz/doi/2017/NNW.2017.27.021.pdf" target="_blank" >http://nnw.cz/doi/2017/NNW.2017.27.021.pdf</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.14311/NNW.2017.27.021" target="_blank" >10.14311/NNW.2017.27.021</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
DG Solver for the Simulation of Simplified Elastic Waves in Two-Dimensional Piecewise Homogeneous Media
Popis výsledku v původním jazyce
The theory of elasticity is a very important discipline which has a lot of applications in science and engineering. In this paper we are interested in elastic materials with different properties between interfaces implicated the discontinuous coefficients in the governing elasticity equations. The main aim is to develop a practical numerical scheme for modeling the behaviour of a simplified piecewise homogeneous medium subjected to an external action in 2D domains. Therefore, the discontinuous Galerkin method is used for the simulation of elastic waves in such elastic materials. The special attention is also paid to treatment of boundary and interface conditions. For the treatment of the time dependency the implicit Euler method is employed. Moreover, the limiting procedure is incorporated in the resulting numerical scheme in order to overcome nonphysical spurious overshoots and undershoots in the vicinity of discontinuities in discrete solutions. Finally, we present computational results for two-component material, representing a planar elastic body subjected to a mechanical hit or mechanical loading.
Název v anglickém jazyce
DG Solver for the Simulation of Simplified Elastic Waves in Two-Dimensional Piecewise Homogeneous Media
Popis výsledku anglicky
The theory of elasticity is a very important discipline which has a lot of applications in science and engineering. In this paper we are interested in elastic materials with different properties between interfaces implicated the discontinuous coefficients in the governing elasticity equations. The main aim is to develop a practical numerical scheme for modeling the behaviour of a simplified piecewise homogeneous medium subjected to an external action in 2D domains. Therefore, the discontinuous Galerkin method is used for the simulation of elastic waves in such elastic materials. The special attention is also paid to treatment of boundary and interface conditions. For the treatment of the time dependency the implicit Euler method is employed. Moreover, the limiting procedure is incorporated in the resulting numerical scheme in order to overcome nonphysical spurious overshoots and undershoots in the vicinity of discontinuities in discrete solutions. Finally, we present computational results for two-component material, representing a planar elastic body subjected to a mechanical hit or mechanical loading.
Klasifikace
Druh
J<sub>SC</sub> - Článek v periodiku v databázi SCOPUS
CEP obor
—
OECD FORD obor
20201 - Electrical and electronic engineering
Návaznosti výsledku
Projekt
—
Návaznosti
N - Vyzkumna aktivita podporovana z neverejnych zdroju
Ostatní
Rok uplatnění
2017
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
NEURAL NETWORK WORLD
ISSN
1210-0552
e-ISSN
—
Svazek periodika
27
Číslo periodika v rámci svazku
4
Stát vydavatele periodika
CZ - Česká republika
Počet stran výsledku
17
Strana od-do
373-389
Kód UT WoS článku
—
EID výsledku v databázi Scopus
2-s2.0-85028701815