Transverse Wave Propagation in a Thin Isotropic Plate Part I
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F44555601%3A13420%2F22%3A43897127" target="_blank" >RIV/44555601:13420/22:43897127 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/68407700:21220/22:00361064
Výsledek na webu
<a href="https://doi.org/10.3390/app12052493" target="_blank" >https://doi.org/10.3390/app12052493</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.3390/app12052493" target="_blank" >10.3390/app12052493</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Transverse Wave Propagation in a Thin Isotropic Plate Part I
Popis výsledku v původním jazyce
This article deals with the propagation of a transverse wave in a thin rectangular isotropicplate, which is fixed around the perimeter. The transverse wave is generated by an impact fallingon the geometric center of the plate. The solution is performed analytically in the MATLAB softwareenvironment for Kirchhoff and Rayleigh geometric models and model of Hooke. The introduction tothe article outlines a very brief history of the solution, followed by a general analytical solution. Thebasic relations for displacements and velocities in the direction of the x, y, z axes are derived. Underthe defined assumptions, the deformations in the individual axes and the rotation of the axes arealso solved. Part of the general solution is the derivation of relations for normal and shear stresses,as well as the magnitudes of shear and normal forces and bending moments. Attention is also paidto determining the relationships for different types of excitation loads of the board. The relations forKirchhoff and Rayleigh model are derived, as well as the results of the analytical solution atselected points of the plate. A comparison of the results of the solution of both models, i.e., Kirchhoffand Rayleigh, is performed, both in terms of displacements, velocities, and normal stresses.
Název v anglickém jazyce
Transverse Wave Propagation in a Thin Isotropic Plate Part I
Popis výsledku anglicky
This article deals with the propagation of a transverse wave in a thin rectangular isotropicplate, which is fixed around the perimeter. The transverse wave is generated by an impact fallingon the geometric center of the plate. The solution is performed analytically in the MATLAB softwareenvironment for Kirchhoff and Rayleigh geometric models and model of Hooke. The introduction tothe article outlines a very brief history of the solution, followed by a general analytical solution. Thebasic relations for displacements and velocities in the direction of the x, y, z axes are derived. Underthe defined assumptions, the deformations in the individual axes and the rotation of the axes arealso solved. Part of the general solution is the derivation of relations for normal and shear stresses,as well as the magnitudes of shear and normal forces and bending moments. Attention is also paidto determining the relationships for different types of excitation loads of the board. The relations forKirchhoff and Rayleigh model are derived, as well as the results of the analytical solution atselected points of the plate. A comparison of the results of the solution of both models, i.e., Kirchhoffand Rayleigh, is performed, both in terms of displacements, velocities, and normal stresses.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
20301 - Mechanical engineering
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2022
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Applied Sciences
ISSN
2076-3417
e-ISSN
2076-3417
Svazek periodika
12
Číslo periodika v rámci svazku
5
Stát vydavatele periodika
CH - Švýcarská konfederace
Počet stran výsledku
19
Strana od-do
1-19
Kód UT WoS článku
000768779600001
EID výsledku v databázi Scopus
2-s2.0-85125780594