Prediction of isoenthalps, Joule-Thomson Coeffcients and Joule-Thomson inversion curves of refrigerants by molecular simulation
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F44555601%3A13440%2F14%3A43885855" target="_blank" >RIV/44555601:13440/14:43885855 - isvavai.cz</a>
Výsledek na webu
<a href="http://dx.doi.org/10.1016/j.fuid.2014.05.011" target="_blank" >http://dx.doi.org/10.1016/j.fuid.2014.05.011</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.fuid.2014.05.011" target="_blank" >10.1016/j.fuid.2014.05.011</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Prediction of isoenthalps, Joule-Thomson Coeffcients and Joule-Thomson inversion curves of refrigerants by molecular simulation
Popis výsledku v původním jazyce
We describe molecular simulation methodology based on the recently proposed NPH MC algorithm to calculate isoenthalps (HC), Joule-Thomson coefficients, (JTC) and Joule-Thomson inversion curves (JTIC), and apply it to the representative ethane-based alternative refrigerants R125, R134a and R152a over a wide range of thermodynamic conditions. Although JTIC have been calculated previously by molecular simulation, HC and JTC have rarely been studied by this approach, due to the requirement to incorporate ideal gas specific heat data, cpIG(T). Traditionally, calculations of HC, JTC and JTIC have been implemented using multi-parameter empirical equations fitted to experimental data. In contrast, molecular simulation methodology requires a force field (FF) describing the molecular interactions, which contains a relatively small number of adjustable parameters.Our study uses FFs from the literature, and cpIG(T) from a comprehensive compilation based solely on quantum and statistical mechanical
Název v anglickém jazyce
Prediction of isoenthalps, Joule-Thomson Coeffcients and Joule-Thomson inversion curves of refrigerants by molecular simulation
Popis výsledku anglicky
We describe molecular simulation methodology based on the recently proposed NPH MC algorithm to calculate isoenthalps (HC), Joule-Thomson coefficients, (JTC) and Joule-Thomson inversion curves (JTIC), and apply it to the representative ethane-based alternative refrigerants R125, R134a and R152a over a wide range of thermodynamic conditions. Although JTIC have been calculated previously by molecular simulation, HC and JTC have rarely been studied by this approach, due to the requirement to incorporate ideal gas specific heat data, cpIG(T). Traditionally, calculations of HC, JTC and JTIC have been implemented using multi-parameter empirical equations fitted to experimental data. In contrast, molecular simulation methodology requires a force field (FF) describing the molecular interactions, which contains a relatively small number of adjustable parameters.Our study uses FFs from the literature, and cpIG(T) from a comprehensive compilation based solely on quantum and statistical mechanical
Klasifikace
Druh
J<sub>x</sub> - Nezařazeno - Článek v odborném periodiku (Jimp, Jsc a Jost)
CEP obor
CD - Makromolekulární chemie
OECD FORD obor
—
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2014
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Fluid Phase Equilibria
ISSN
0378-3812
e-ISSN
—
Svazek periodika
375
Číslo periodika v rámci svazku
AUG 15 2014
Stát vydavatele periodika
NL - Nizozemsko
Počet stran výsledku
9
Strana od-do
143-151
Kód UT WoS článku
000339533200017
EID výsledku v databázi Scopus
—