A Study on an Effective Feature Selection Method Using Hog-Family Feature for Human Detection
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F44555601%3A13440%2F14%3A43886126" target="_blank" >RIV/44555601:13440/14:43886126 - isvavai.cz</a>
Výsledek na webu
<a href="http://www.sersc.org/journals/IJMUE/vol9_no12_2014/19.pdf" target="_blank" >http://www.sersc.org/journals/IJMUE/vol9_no12_2014/19.pdf</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.14257/ijmue.2014.9.12.19" target="_blank" >10.14257/ijmue.2014.9.12.19</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
A Study on an Effective Feature Selection Method Using Hog-Family Feature for Human Detection
Popis výsledku v původním jazyce
It is the important that Support Vector Machine (SVM) is the powerful learning machines and has been applied to varying task with generally acceptable performance. The SVM success for classification tasks in one domain is affected by features that it represents the instance of specific class. The representative and discriminative features that they are given, SVM learning is going to provide better generalization and consequently that we are able to obtain good classifier. In this paper, we define the problem of feature choices for tasks of human detections and measure the performance of each feature. And also we consider HOG-family feature to study an effective feature selection method. Finally we proposed the multi-scale HOG as a NEW family member inthis feature group. In addition we also combine SVM with Principal Component Analysis (PCA) to reduce dimension of features and enhance the evaluation speed while retaining most of discriminative feature vectors.
Název v anglickém jazyce
A Study on an Effective Feature Selection Method Using Hog-Family Feature for Human Detection
Popis výsledku anglicky
It is the important that Support Vector Machine (SVM) is the powerful learning machines and has been applied to varying task with generally acceptable performance. The SVM success for classification tasks in one domain is affected by features that it represents the instance of specific class. The representative and discriminative features that they are given, SVM learning is going to provide better generalization and consequently that we are able to obtain good classifier. In this paper, we define the problem of feature choices for tasks of human detections and measure the performance of each feature. And also we consider HOG-family feature to study an effective feature selection method. Finally we proposed the multi-scale HOG as a NEW family member inthis feature group. In addition we also combine SVM with Principal Component Analysis (PCA) to reduce dimension of features and enhance the evaluation speed while retaining most of discriminative feature vectors.
Klasifikace
Druh
J<sub>x</sub> - Nezařazeno - Článek v odborném periodiku (Jimp, Jsc a Jost)
CEP obor
IN - Informatika
OECD FORD obor
—
Návaznosti výsledku
Projekt
—
Návaznosti
N - Vyzkumna aktivita podporovana z neverejnych zdroju
Ostatní
Rok uplatnění
2014
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
International Journal of Multimedia and Ubiquitous Engineering
ISSN
1975-0080
e-ISSN
—
Svazek periodika
9
Číslo periodika v rámci svazku
12
Stát vydavatele periodika
KR - Korejská republika
Počet stran výsledku
9
Strana od-do
203-212
Kód UT WoS článku
—
EID výsledku v databázi Scopus
—