Estimation of the inductive model od objects clustering stability based on the K-means algorithm for different levels of data noise
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F44555601%3A13440%2F16%3A43888048" target="_blank" >RIV/44555601:13440/16:43888048 - isvavai.cz</a>
Výsledek na webu
<a href="http://dx.doi.org/10.15588/1607-3274-2016-4-7" target="_blank" >http://dx.doi.org/10.15588/1607-3274-2016-4-7</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.15588/1607-3274-2016-4-7" target="_blank" >10.15588/1607-3274-2016-4-7</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Estimation of the inductive model od objects clustering stability based on the K-means algorithm for different levels of data noise
Popis výsledku v původním jazyce
The inductive model of the objective clustering of objects based on the k-means algorithm clustering is presented in the paper. The algorithm for division of initial data into two equal power subsets is proposed and practically implemented. The difference between the mass centres of the appropriate clusters in different clustering is proposed to use as an external balance criterion. Approbation of the proposed model operation was carried out using the data "Compound" and "Aggregation" of the database of the Computing School in the Eastern Finland University. The researches on the estimation of the model stability to a noise component using the data "Seeds" are presented in the paper. The algorithms k-means, c-means, inductive k-means and agglomerative hierarchical algorithm were used to compare the results of the experiment. The ways of further improvement of the proposed model in order to increase the objectivity of investigated data clustering were defined by the results of the simulation
Název v anglickém jazyce
Estimation of the inductive model od objects clustering stability based on the K-means algorithm for different levels of data noise
Popis výsledku anglicky
The inductive model of the objective clustering of objects based on the k-means algorithm clustering is presented in the paper. The algorithm for division of initial data into two equal power subsets is proposed and practically implemented. The difference between the mass centres of the appropriate clusters in different clustering is proposed to use as an external balance criterion. Approbation of the proposed model operation was carried out using the data "Compound" and "Aggregation" of the database of the Computing School in the Eastern Finland University. The researches on the estimation of the model stability to a noise component using the data "Seeds" are presented in the paper. The algorithms k-means, c-means, inductive k-means and agglomerative hierarchical algorithm were used to compare the results of the experiment. The ways of further improvement of the proposed model in order to increase the objectivity of investigated data clustering were defined by the results of the simulation
Klasifikace
Druh
J<sub>ost</sub> - Ostatní články v recenzovaných periodicích
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
—
Návaznosti
N - Vyzkumna aktivita podporovana z neverejnych zdroju
Ostatní
Rok uplatnění
2016
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Radio Electronics, Computer Science, Control
ISSN
1607-3274
e-ISSN
—
Svazek periodika
2016
Číslo periodika v rámci svazku
?4(39)
Stát vydavatele periodika
UA - Ukrajina
Počet stran výsledku
7
Strana od-do
54-60
Kód UT WoS článku
000393190800007
EID výsledku v databázi Scopus
—