Molecular Force Field Development for Aqueous Electrolytes: 2. Polarizable Models Incorporating Crystalline Chemical Potential and Their Accurate Simulations of Halite, Hydrohalite, Aqueous Solutions of NaCl, and Solubility
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F44555601%3A13440%2F20%3A43895814" target="_blank" >RIV/44555601:13440/20:43895814 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/67985858:_____/20:00524833
Výsledek na webu
<a href="https://pubs.acs.org/doi/10.1021/acs.jctc.0c00161" target="_blank" >https://pubs.acs.org/doi/10.1021/acs.jctc.0c00161</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1021/acs.jctc.0c00161" target="_blank" >10.1021/acs.jctc.0c00161</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Molecular Force Field Development for Aqueous Electrolytes: 2. Polarizable Models Incorporating Crystalline Chemical Potential and Their Accurate Simulations of Halite, Hydrohalite, Aqueous Solutions of NaCl, and Solubility
Popis výsledku v původním jazyce
The current state-of-the-art force fields (FFs) for Na+ and Cl- ions are not capable of simultaneously predicting the thermodynamic properties of the aqueous solution and the crystalline phase. This is primarily due to an oversimplification of the interaction models used but partially also due to the insufficient parametrization of the FFs. We have devised a straightforward and simple parametrization procedure for determining the ion-ion interaction parameters in complex molecular models of NaCl electrolytes which involves fitting the density, lattice energy, and chemical potential of crystalline NaCl at ambient conditions. Starting from the AH/BK3 and MAH/BK3 FFs, the parametrization approach is employed to develop a complex and accurate polarizable molecular model for the NaCl electrolyte by parametrizing the ion-ion interactions. The performance of the refined polarizable NaCl FF is assessed by evaluating the different thermodynamic and mechanical properties of the crystal, density of crystalline and molten NaCl, along with the melting temperature, properties of aqueous solutions, and the structure and stability of hydrohalite. The simulation results confirm the superiority of the refined FF in comparison with the existing state-of-the-art FFs to accurately predict a wide range of system properties in different NaCl phases, including NaCl aqueous solubility. The refined FF may find applications in the accurate simulations of NaCl electrolytes including inhomogeneous environment, phase equilibria and interfaces, and metastable states. Finally, the parametrization strategy is robust and general and can be used to devise molecular models for other electrolytes.
Název v anglickém jazyce
Molecular Force Field Development for Aqueous Electrolytes: 2. Polarizable Models Incorporating Crystalline Chemical Potential and Their Accurate Simulations of Halite, Hydrohalite, Aqueous Solutions of NaCl, and Solubility
Popis výsledku anglicky
The current state-of-the-art force fields (FFs) for Na+ and Cl- ions are not capable of simultaneously predicting the thermodynamic properties of the aqueous solution and the crystalline phase. This is primarily due to an oversimplification of the interaction models used but partially also due to the insufficient parametrization of the FFs. We have devised a straightforward and simple parametrization procedure for determining the ion-ion interaction parameters in complex molecular models of NaCl electrolytes which involves fitting the density, lattice energy, and chemical potential of crystalline NaCl at ambient conditions. Starting from the AH/BK3 and MAH/BK3 FFs, the parametrization approach is employed to develop a complex and accurate polarizable molecular model for the NaCl electrolyte by parametrizing the ion-ion interactions. The performance of the refined polarizable NaCl FF is assessed by evaluating the different thermodynamic and mechanical properties of the crystal, density of crystalline and molten NaCl, along with the melting temperature, properties of aqueous solutions, and the structure and stability of hydrohalite. The simulation results confirm the superiority of the refined FF in comparison with the existing state-of-the-art FFs to accurately predict a wide range of system properties in different NaCl phases, including NaCl aqueous solubility. The refined FF may find applications in the accurate simulations of NaCl electrolytes including inhomogeneous environment, phase equilibria and interfaces, and metastable states. Finally, the parametrization strategy is robust and general and can be used to devise molecular models for other electrolytes.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10302 - Condensed matter physics (including formerly solid state physics, supercond.)
Návaznosti výsledku
Projekt
<a href="/cs/project/GA19-05696S" target="_blank" >GA19-05696S: Vlastnosti teplosměnných tekutin na bázi vody při extrémních podmínkách</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2020
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Journal of Chemical Theory and Computation
ISSN
1549-9618
e-ISSN
—
Svazek periodika
16
Číslo periodika v rámci svazku
6
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
12
Strana od-do
3677-3688
Kód UT WoS článku
000541503600020
EID výsledku v databázi Scopus
2-s2.0-85086286140