Risk of mid-air collision in a lateral plane
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F44555601%3A13440%2F20%3A43896099" target="_blank" >RIV/44555601:13440/20:43896099 - isvavai.cz</a>
Výsledek na webu
<a href="https://ceur-ws.org/Vol-2805/paper22.pdf" target="_blank" >https://ceur-ws.org/Vol-2805/paper22.pdf</a>
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Risk of mid-air collision in a lateral plane
Popis výsledku v původním jazyce
Mid-air collision in air transportation is one of the most dangerous safety categories. The risk of mid-air collision assessment is an important component of aviation safety estimation. Due to the low number of accidents happened, risk of mid-air collision within limited airspace may be estimated by evaluation of its main components. Paper is more focused on assessing the risk of air traffic separation lost in lateral plane based on air traffic deep learning within predefined airspace. Statistical analysis of current air traffic data and geometrical configuration of routes network are used for probability distribution function fitting. Position of airspace users is obtained from location reports coded by Automatic Dependent Surveillance-Broadcast data format, which is received by ground-based software defined radio. Risk of separation lost in the lateral plane is estimated based on density probability distribution function of airplane unintentional deviations. Finally, the risk of a mid-air collision in the lateral plane is estimated by Reich formula for Ukrainian airspace. Copyright (C) 2020 for this paper by its authors.
Název v anglickém jazyce
Risk of mid-air collision in a lateral plane
Popis výsledku anglicky
Mid-air collision in air transportation is one of the most dangerous safety categories. The risk of mid-air collision assessment is an important component of aviation safety estimation. Due to the low number of accidents happened, risk of mid-air collision within limited airspace may be estimated by evaluation of its main components. Paper is more focused on assessing the risk of air traffic separation lost in lateral plane based on air traffic deep learning within predefined airspace. Statistical analysis of current air traffic data and geometrical configuration of routes network are used for probability distribution function fitting. Position of airspace users is obtained from location reports coded by Automatic Dependent Surveillance-Broadcast data format, which is received by ground-based software defined radio. Risk of separation lost in the lateral plane is estimated based on density probability distribution function of airplane unintentional deviations. Finally, the risk of a mid-air collision in the lateral plane is estimated by Reich formula for Ukrainian airspace. Copyright (C) 2020 for this paper by its authors.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2020
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
CEUR Workshop Proceedings
ISBN
—
ISSN
1613-0073
e-ISSN
—
Počet stran výsledku
11
Strana od-do
297-307
Název nakladatele
Elsevier
Místo vydání
London
Místo konání akce
Kherson
Datum konání akce
15. 10. 2020
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—