On Molecular-Based Equations of State: Perturbation Theories, Simple Models, and SAFT Modeling
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F44555601%3A13440%2F20%3A43896145" target="_blank" >RIV/44555601:13440/20:43896145 - isvavai.cz</a>
Výsledek na webu
<a href="https://ui.adsabs.harvard.edu/abs/2020FrP.....8..287N/abstract" target="_blank" >https://ui.adsabs.harvard.edu/abs/2020FrP.....8..287N/abstract</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.3389/fphy.2020.00287" target="_blank" >10.3389/fphy.2020.00287</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
On Molecular-Based Equations of State: Perturbation Theories, Simple Models, and SAFT Modeling
Popis výsledku v původním jazyce
With the exception of purely empirical equations of state, the remaining equations can bear the tag "molecular based." Depending on their derivation, their molecular basis varies from those having only some traits of ideas/results of molecular considerations to equations obtained truly by application of statistical mechanics. Starting from formulations of statistical mechanics of liquids, a general scheme for derivation of truly perturbed equations is formulated. Two approaches, Bottom-Up and Top-Down, are identified, and the individual steps are discussed in detail along with several rules that reflect the essentials of the physics of fluids, which should be observed. Approximations and simplifications used in the implementation of the scheme are then analyzed in light of these rules, and a classification of equations of state is introduced. To exemplify these approaches in detail, theoretical and SAFT routes toward an equation of state are considered for water along with a potential way of merging these two approaches to obtain a reliable equation with a potential topredictthe behavior of real fluids and not only to correlate them.
Název v anglickém jazyce
On Molecular-Based Equations of State: Perturbation Theories, Simple Models, and SAFT Modeling
Popis výsledku anglicky
With the exception of purely empirical equations of state, the remaining equations can bear the tag "molecular based." Depending on their derivation, their molecular basis varies from those having only some traits of ideas/results of molecular considerations to equations obtained truly by application of statistical mechanics. Starting from formulations of statistical mechanics of liquids, a general scheme for derivation of truly perturbed equations is formulated. Two approaches, Bottom-Up and Top-Down, are identified, and the individual steps are discussed in detail along with several rules that reflect the essentials of the physics of fluids, which should be observed. Approximations and simplifications used in the implementation of the scheme are then analyzed in light of these rules, and a classification of equations of state is introduced. To exemplify these approaches in detail, theoretical and SAFT routes toward an equation of state are considered for water along with a potential way of merging these two approaches to obtain a reliable equation with a potential topredictthe behavior of real fluids and not only to correlate them.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10301 - Atomic, molecular and chemical physics (physics of atoms and molecules including collision, interaction with radiation, magnetic resonances, Mössbauer effect)
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2020
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Frontiers in physics
ISSN
2296-424X
e-ISSN
—
Svazek periodika
2020
Číslo periodika v rámci svazku
8
Stát vydavatele periodika
CH - Švýcarská konfederace
Počet stran výsledku
17
Strana od-do
"nestrankovano"
Kód UT WoS článku
000576925800001
EID výsledku v databázi Scopus
2-s2.0-85092748649