Effect of multilayered catalytic bed on temperature profiles and catalytic performance for Fischer?Tropsch synthesis over Co/Al2O3 catalyst in a multitubular fixed-bed reactor
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F44555601%3A13440%2F23%3A43897723" target="_blank" >RIV/44555601:13440/23:43897723 - isvavai.cz</a>
Výsledek na webu
<a href="https://www.sciencedirect.com/science/article/pii/S0263876223004756?dgcid=coauthor" target="_blank" >https://www.sciencedirect.com/science/article/pii/S0263876223004756?dgcid=coauthor</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.cherd.2023.07.038" target="_blank" >10.1016/j.cherd.2023.07.038</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Effect of multilayered catalytic bed on temperature profiles and catalytic performance for Fischer?Tropsch synthesis over Co/Al2O3 catalyst in a multitubular fixed-bed reactor
Popis výsledku v původním jazyce
Fischer-Tropsch synthesis (FTS) is a widely recognized process that catalytically converts syngas into higher hydrocarbons and oxygenates, which are ultimately upgraded into transportation fuels and chemicals. Effective temperature control and heat dissipation are crucial considerations due to the exothermic nature of the FT reaction. Underutilization of the catalytic bed is another challenge in fixed-bed reactors. The implementation of a multilayered catalytic bed, with the catalytic activity in an ascending order, has shown positive effects in addressing these issues. It mitigates adiabatic temperature rise, reduces the maximum reactor temperature, and minimizes catalyst deactivation at high temperatures. Moreover, this multilayered bed effectively addresses the underutilization issue by ensuring optimal utilization of the entire bed as the catalytic activity transitions from one layer to another during the reaction. Layers with a higher cobalt loading remain active until the completion of the reaction, resulting in minimal fluctuations in CO conversion. To achieve uniform temperature profiles, catalytic activities, and product distributions in all reactor tubes in a multitubular reactor, it is imperative to maintain consistent reaction conditions, utilize the same catalyst loading in all tubes, employ an appropriate heating system, and implement an efficient cooling system to dissipate the heat generated by the exothermic reaction. Furthermore, investigations into the properties of the used catalysts after the reaction indicate that catalyst deactivation primarily occurs due to the deposition of FT products on the catalyst surface and pores and blockage of active cobalt sites, and sintering of cobalt particles.
Název v anglickém jazyce
Effect of multilayered catalytic bed on temperature profiles and catalytic performance for Fischer?Tropsch synthesis over Co/Al2O3 catalyst in a multitubular fixed-bed reactor
Popis výsledku anglicky
Fischer-Tropsch synthesis (FTS) is a widely recognized process that catalytically converts syngas into higher hydrocarbons and oxygenates, which are ultimately upgraded into transportation fuels and chemicals. Effective temperature control and heat dissipation are crucial considerations due to the exothermic nature of the FT reaction. Underutilization of the catalytic bed is another challenge in fixed-bed reactors. The implementation of a multilayered catalytic bed, with the catalytic activity in an ascending order, has shown positive effects in addressing these issues. It mitigates adiabatic temperature rise, reduces the maximum reactor temperature, and minimizes catalyst deactivation at high temperatures. Moreover, this multilayered bed effectively addresses the underutilization issue by ensuring optimal utilization of the entire bed as the catalytic activity transitions from one layer to another during the reaction. Layers with a higher cobalt loading remain active until the completion of the reaction, resulting in minimal fluctuations in CO conversion. To achieve uniform temperature profiles, catalytic activities, and product distributions in all reactor tubes in a multitubular reactor, it is imperative to maintain consistent reaction conditions, utilize the same catalyst loading in all tubes, employ an appropriate heating system, and implement an efficient cooling system to dissipate the heat generated by the exothermic reaction. Furthermore, investigations into the properties of the used catalysts after the reaction indicate that catalyst deactivation primarily occurs due to the deposition of FT products on the catalyst surface and pores and blockage of active cobalt sites, and sintering of cobalt particles.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
20402 - Chemical process engineering
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2023
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Chemical Engineering Research and Design
ISSN
0263-8762
e-ISSN
1744-3563
Svazek periodika
2023
Číslo periodika v rámci svazku
197
Stát vydavatele periodika
GB - Spojené království Velké Británie a Severního Irska
Počet stran výsledku
18
Strana od-do
274-291
Kód UT WoS článku
001052736300001
EID výsledku v databázi Scopus
2-s2.0-85166742626