Applying biclustering technique and gene ontology analysis for gene expression data processing
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F44555601%3A13440%2F24%3A43898429" target="_blank" >RIV/44555601:13440/24:43898429 - isvavai.cz</a>
Výsledek na webu
<a href="http://chrome-extension://efaidnbmnnnibpcajpcglclefindmkaj/https://ceur-ws.org/Vol-3675/paper2.pdf" target="_blank" >http://chrome-extension://efaidnbmnnnibpcajpcglclefindmkaj/https://ceur-ws.org/Vol-3675/paper2.pdf</a>
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Applying biclustering technique and gene ontology analysis for gene expression data processing
Popis výsledku v původním jazyce
This study details the biclustering methods for gene expression data, focusing on the refinement of quality criteria essential for evaluating the generated bicluster structures. An internal biclustering quality criterion is introduced, leveraging mutual information evaluation across both rows and columns within a bicluster. Additionally, the research proposes a novel hybrid biclustering model, which amalgamates the ensemble biclustering algorithm with Bayesian optimization techniques to optimize the algorithm's parameters effectively. This model is grounded on a target objective function derived from the newly proposed quality criterion. Simulations carried out on gene expression data from patients afflicted with various cancer types demonstrate the efficacy of the model. Specifically, the application of the mutual information-based criterion within the objective function results in the formation of a bicluster structure comprising 18 distinct biclusters. Furthermore, the study expands upon a method that employs gene ontology analysis, facilitating the identification of subsets of significant gene expression data from bicluster analysis results. A comprehensive procedure for identifying significant gene subsets through a combination of bicluster and gene ontology analyses is executed. The evaluation of sample classification results, characterized by these significant gene subsets, underscores the method's effectiveness. The classification quality criteria exhibit relatively high values, even with a reduced number of genes, indicating the method's efficiency
Název v anglickém jazyce
Applying biclustering technique and gene ontology analysis for gene expression data processing
Popis výsledku anglicky
This study details the biclustering methods for gene expression data, focusing on the refinement of quality criteria essential for evaluating the generated bicluster structures. An internal biclustering quality criterion is introduced, leveraging mutual information evaluation across both rows and columns within a bicluster. Additionally, the research proposes a novel hybrid biclustering model, which amalgamates the ensemble biclustering algorithm with Bayesian optimization techniques to optimize the algorithm's parameters effectively. This model is grounded on a target objective function derived from the newly proposed quality criterion. Simulations carried out on gene expression data from patients afflicted with various cancer types demonstrate the efficacy of the model. Specifically, the application of the mutual information-based criterion within the objective function results in the formation of a bicluster structure comprising 18 distinct biclusters. Furthermore, the study expands upon a method that employs gene ontology analysis, facilitating the identification of subsets of significant gene expression data from bicluster analysis results. A comprehensive procedure for identifying significant gene subsets through a combination of bicluster and gene ontology analyses is executed. The evaluation of sample classification results, characterized by these significant gene subsets, underscores the method's effectiveness. The classification quality criteria exhibit relatively high values, even with a reduced number of genes, indicating the method's efficiency
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2024
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
CEUR Workshop Proceedings
ISBN
—
ISSN
1613-0073
e-ISSN
—
Počet stran výsledku
15
Strana od-do
14-28
Název nakladatele
CEUR-WS
Místo vydání
Aachen
Místo konání akce
Khmelnytskyi
Datum konání akce
28. 3. 2024
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—