Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Probabilistic Algorithm for System Level Self-diagnosis

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F44555601%3A13440%2F24%3A43898912" target="_blank" >RIV/44555601:13440/24:43898912 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://link.springer.com/chapter/10.1007/978-3-031-70959-3_11" target="_blank" >https://link.springer.com/chapter/10.1007/978-3-031-70959-3_11</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1007/978-3-031-70959-3_11" target="_blank" >10.1007/978-3-031-70959-3_11</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Probabilistic Algorithm for System Level Self-diagnosis

  • Popis výsledku v původním jazyce

    System-level self-diagnosis is one of the most important tasks in the field of computer science. In this paper, we present the results of the research on how to increase the credibility of the results of system diagnosis by way of merging two methods of system-level self-diagnostic (traditional and unconventional). As distinct from traditional system level self-diagnosis, unconventional method of system diagnosis can deal with arbitrary testing assignments and can be applied to heterogeneous systems. The diagnosis problem consists of determining the location of faults in the system (i.e., determining faulty units). In traditional system level self-diagnosis, such diagnosis problem can be defined as finding the necessary and sufficient conditions for a system testing assignment that should be satisfied to achieve a given level of diagnosability given a fault model and an allowable family of fault sets. For solving the diagnosis problem the appropriate diagnosis algorithms should be developed. Before designing a diagnosis algorithm it is needed to adopt the strategy that is suitable for the particular complex system. Among the possible diagnosis strategies, such as unique, sequential, excess and probabilistic, the probabilistic strategy was chosen. Based on this strategy, the diagnosis algorithms were designed. The results (credibility) of the algorithms that follow the probabilistic diagnosis strategy can be improved. For this purpose, some elements of unconventional system level self-diagnosis are used in the algorithm design. Short description of unconventional system level self-diagnosis is presented in this paper. The obtained results of improved diagnosis allow revealing the functional dependence of the credibility of diagnosis results on the values of system and testing parameters.

  • Název v anglickém jazyce

    Probabilistic Algorithm for System Level Self-diagnosis

  • Popis výsledku anglicky

    System-level self-diagnosis is one of the most important tasks in the field of computer science. In this paper, we present the results of the research on how to increase the credibility of the results of system diagnosis by way of merging two methods of system-level self-diagnostic (traditional and unconventional). As distinct from traditional system level self-diagnosis, unconventional method of system diagnosis can deal with arbitrary testing assignments and can be applied to heterogeneous systems. The diagnosis problem consists of determining the location of faults in the system (i.e., determining faulty units). In traditional system level self-diagnosis, such diagnosis problem can be defined as finding the necessary and sufficient conditions for a system testing assignment that should be satisfied to achieve a given level of diagnosability given a fault model and an allowable family of fault sets. For solving the diagnosis problem the appropriate diagnosis algorithms should be developed. Before designing a diagnosis algorithm it is needed to adopt the strategy that is suitable for the particular complex system. Among the possible diagnosis strategies, such as unique, sequential, excess and probabilistic, the probabilistic strategy was chosen. Based on this strategy, the diagnosis algorithms were designed. The results (credibility) of the algorithms that follow the probabilistic diagnosis strategy can be improved. For this purpose, some elements of unconventional system level self-diagnosis are used in the algorithm design. Short description of unconventional system level self-diagnosis is presented in this paper. The obtained results of improved diagnosis allow revealing the functional dependence of the credibility of diagnosis results on the values of system and testing parameters.

Klasifikace

  • Druh

    D - Stať ve sborníku

  • CEP obor

  • OECD FORD obor

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Návaznosti výsledku

  • Projekt

  • Návaznosti

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Ostatní

  • Rok uplatnění

    2024

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název statě ve sborníku

    Lecture Notes in Data Engineering, Computational Intelligence, and Decision-Making, Volume 1

  • ISBN

    978-3-031-70958-6

  • ISSN

    2367-4512

  • e-ISSN

  • Počet stran výsledku

    23

  • Strana od-do

    219-241

  • Název nakladatele

    Springer

  • Místo vydání

    Berlín

  • Místo konání akce

    Ústí nad Labem

  • Datum konání akce

    19. 6. 2024

  • Typ akce podle státní příslušnosti

    WRD - Celosvětová akce

  • Kód UT WoS článku