Probabilistic Algorithm for System Level Self-diagnosis
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F44555601%3A13440%2F24%3A43898912" target="_blank" >RIV/44555601:13440/24:43898912 - isvavai.cz</a>
Výsledek na webu
<a href="https://link.springer.com/chapter/10.1007/978-3-031-70959-3_11" target="_blank" >https://link.springer.com/chapter/10.1007/978-3-031-70959-3_11</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/978-3-031-70959-3_11" target="_blank" >10.1007/978-3-031-70959-3_11</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Probabilistic Algorithm for System Level Self-diagnosis
Popis výsledku v původním jazyce
System-level self-diagnosis is one of the most important tasks in the field of computer science. In this paper, we present the results of the research on how to increase the credibility of the results of system diagnosis by way of merging two methods of system-level self-diagnostic (traditional and unconventional). As distinct from traditional system level self-diagnosis, unconventional method of system diagnosis can deal with arbitrary testing assignments and can be applied to heterogeneous systems. The diagnosis problem consists of determining the location of faults in the system (i.e., determining faulty units). In traditional system level self-diagnosis, such diagnosis problem can be defined as finding the necessary and sufficient conditions for a system testing assignment that should be satisfied to achieve a given level of diagnosability given a fault model and an allowable family of fault sets. For solving the diagnosis problem the appropriate diagnosis algorithms should be developed. Before designing a diagnosis algorithm it is needed to adopt the strategy that is suitable for the particular complex system. Among the possible diagnosis strategies, such as unique, sequential, excess and probabilistic, the probabilistic strategy was chosen. Based on this strategy, the diagnosis algorithms were designed. The results (credibility) of the algorithms that follow the probabilistic diagnosis strategy can be improved. For this purpose, some elements of unconventional system level self-diagnosis are used in the algorithm design. Short description of unconventional system level self-diagnosis is presented in this paper. The obtained results of improved diagnosis allow revealing the functional dependence of the credibility of diagnosis results on the values of system and testing parameters.
Název v anglickém jazyce
Probabilistic Algorithm for System Level Self-diagnosis
Popis výsledku anglicky
System-level self-diagnosis is one of the most important tasks in the field of computer science. In this paper, we present the results of the research on how to increase the credibility of the results of system diagnosis by way of merging two methods of system-level self-diagnostic (traditional and unconventional). As distinct from traditional system level self-diagnosis, unconventional method of system diagnosis can deal with arbitrary testing assignments and can be applied to heterogeneous systems. The diagnosis problem consists of determining the location of faults in the system (i.e., determining faulty units). In traditional system level self-diagnosis, such diagnosis problem can be defined as finding the necessary and sufficient conditions for a system testing assignment that should be satisfied to achieve a given level of diagnosability given a fault model and an allowable family of fault sets. For solving the diagnosis problem the appropriate diagnosis algorithms should be developed. Before designing a diagnosis algorithm it is needed to adopt the strategy that is suitable for the particular complex system. Among the possible diagnosis strategies, such as unique, sequential, excess and probabilistic, the probabilistic strategy was chosen. Based on this strategy, the diagnosis algorithms were designed. The results (credibility) of the algorithms that follow the probabilistic diagnosis strategy can be improved. For this purpose, some elements of unconventional system level self-diagnosis are used in the algorithm design. Short description of unconventional system level self-diagnosis is presented in this paper. The obtained results of improved diagnosis allow revealing the functional dependence of the credibility of diagnosis results on the values of system and testing parameters.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2024
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Lecture Notes in Data Engineering, Computational Intelligence, and Decision-Making, Volume 1
ISBN
978-3-031-70958-6
ISSN
2367-4512
e-ISSN
—
Počet stran výsledku
23
Strana od-do
219-241
Název nakladatele
Springer
Místo vydání
Berlín
Místo konání akce
Ústí nad Labem
Datum konání akce
19. 6. 2024
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—