Knowledge-Intensive Business Services Employment Structure and Economic Development in EU Regions
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F44555601%3A13510%2F22%3A43897451" target="_blank" >RIV/44555601:13510/22:43897451 - isvavai.cz</a>
Výsledek na webu
<a href="https://www.ceeol.com/search/article-detail?id=1083118" target="_blank" >https://www.ceeol.com/search/article-detail?id=1083118</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.18778/1508-2008.25.32" target="_blank" >10.18778/1508-2008.25.32</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Knowledge-Intensive Business Services Employment Structure and Economic Development in EU Regions
Popis výsledku v původním jazyce
The study presents the results of grouping EU NUTS 2 regions based on the share of employment in particular sectors (knowledge?intensive high?technology services, knowledge?intensive market services and other knowledge?intensive services), as well as GDP per capita, in 2008 and 2018. The grouping of regions was done by clustering methods (for structure data), including Ward?s method to determine the number of groups and the k?means for the final partition. GDP groups were defined using a sample mean and one standard deviation. To assess the similarity of the classifications and, consequently, to evaluate correlations between the employment structures and the level and pace of economic development, the similarity measure for partitions proposed by Sokołowski was used.
Název v anglickém jazyce
Knowledge-Intensive Business Services Employment Structure and Economic Development in EU Regions
Popis výsledku anglicky
The study presents the results of grouping EU NUTS 2 regions based on the share of employment in particular sectors (knowledge?intensive high?technology services, knowledge?intensive market services and other knowledge?intensive services), as well as GDP per capita, in 2008 and 2018. The grouping of regions was done by clustering methods (for structure data), including Ward?s method to determine the number of groups and the k?means for the final partition. GDP groups were defined using a sample mean and one standard deviation. To assess the similarity of the classifications and, consequently, to evaluate correlations between the employment structures and the level and pace of economic development, the similarity measure for partitions proposed by Sokołowski was used.
Klasifikace
Druh
J<sub>SC</sub> - Článek v periodiku v databázi SCOPUS
CEP obor
—
OECD FORD obor
50202 - Applied Economics, Econometrics
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2022
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Comparative Economic Research. Central and Eastern Europe
ISSN
1508-2008
e-ISSN
2082-6737
Svazek periodika
25
Číslo periodika v rámci svazku
4
Stát vydavatele periodika
PL - Polská republika
Počet stran výsledku
25
Strana od-do
109-133
Kód UT WoS článku
—
EID výsledku v databázi Scopus
2-s2.0-85146888556