Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Automated Facial Mark Creating Systems Replace Classical Geometric Morphometrics: An Example of How New Technology Can and Should Drive Avatar Creation in a Game Development Pipeline

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F44555601%3A13510%2F24%3A43898974" target="_blank" >RIV/44555601:13510/24:43898974 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://link.springer.com/chapter/10.1007/978-3-031-76812-5_26#citeas" target="_blank" >https://link.springer.com/chapter/10.1007/978-3-031-76812-5_26#citeas</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1007/978-3-031-76812-5_26" target="_blank" >10.1007/978-3-031-76812-5_26</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Automated Facial Mark Creating Systems Replace Classical Geometric Morphometrics: An Example of How New Technology Can and Should Drive Avatar Creation in a Game Development Pipeline

  • Popis výsledku v původním jazyce

    In recent years, the field of artificial intelligence (AI) has witnessed significant advancements, particularly with the development of transformer architectures and pre-learned feature extraction techniques. Before this, thousands of high-quality scientific papers using biological landmarks (manually placed by a researcher) on faces have identified relations between facial morphology and various human ratings of them. Geometric Morphometrics provides a framework for quantifying and analyzing shape variations in biological organisms, allowing for the extraction of morphological features that rely on landmark identification. In avatar creation, matters are more complex. Game designers, when attempting to mimic anticipated ratings, oftentimes cannot rely strictly on landmarks. As we document here, we can relax the rigor of constructed, geometrically identifiable landmarks and replace them with characteristic points identified by artificial neural networks (aNNs), obviating the need for tiresome, meticulous landmark identification by human operators. By integrating these features into the avatar generation process, we can ensure that the resulting avatars exhibit desired characteristics, while still adhering to biological constraints. We relate these characteristic points on female face images whose physical attractiveness has been rated by 50 males and 50 females (on a 7-point scale). We construct Dirichlet distributions of the ratings of each face and use these to investigate whether there are trends or biases in face ratings by male raters versus female raters. We use the coordinates of characteristic points on the faces to identify clusters of attractiveness and relate these clusters to heat maps of the ratings. We explore localized pseudo-symmetries, and how they relate to these ratings. Our proposed system aims to leverage the strengths of transformer architectures and pre-trained neural networks, notably their ability to capture contextual information, to enhance the realism and biological accuracy of the avatars.

  • Název v anglickém jazyce

    Automated Facial Mark Creating Systems Replace Classical Geometric Morphometrics: An Example of How New Technology Can and Should Drive Avatar Creation in a Game Development Pipeline

  • Popis výsledku anglicky

    In recent years, the field of artificial intelligence (AI) has witnessed significant advancements, particularly with the development of transformer architectures and pre-learned feature extraction techniques. Before this, thousands of high-quality scientific papers using biological landmarks (manually placed by a researcher) on faces have identified relations between facial morphology and various human ratings of them. Geometric Morphometrics provides a framework for quantifying and analyzing shape variations in biological organisms, allowing for the extraction of morphological features that rely on landmark identification. In avatar creation, matters are more complex. Game designers, when attempting to mimic anticipated ratings, oftentimes cannot rely strictly on landmarks. As we document here, we can relax the rigor of constructed, geometrically identifiable landmarks and replace them with characteristic points identified by artificial neural networks (aNNs), obviating the need for tiresome, meticulous landmark identification by human operators. By integrating these features into the avatar generation process, we can ensure that the resulting avatars exhibit desired characteristics, while still adhering to biological constraints. We relate these characteristic points on female face images whose physical attractiveness has been rated by 50 males and 50 females (on a 7-point scale). We construct Dirichlet distributions of the ratings of each face and use these to investigate whether there are trends or biases in face ratings by male raters versus female raters. We use the coordinates of characteristic points on the faces to identify clusters of attractiveness and relate these clusters to heat maps of the ratings. We explore localized pseudo-symmetries, and how they relate to these ratings. Our proposed system aims to leverage the strengths of transformer architectures and pre-trained neural networks, notably their ability to capture contextual information, to enhance the realism and biological accuracy of the avatars.

Klasifikace

  • Druh

    D - Stať ve sborníku

  • CEP obor

  • OECD FORD obor

    50101 - Psychology (including human - machine relations)

Návaznosti výsledku

  • Projekt

  • Návaznosti

    N - Vyzkumna aktivita podporovana z neverejnych zdroju

Ostatní

  • Rok uplatnění

    2024

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název statě ve sborníku

    Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)

  • ISBN

    978-3-031-76811-8

  • ISSN

  • e-ISSN

  • Počet stran výsledku

    11

  • Strana od-do

    393-403

  • Název nakladatele

    Springer

  • Místo vydání

    Cham

  • Místo konání akce

    Washington DC

  • Datum konání akce

    29. 6. 2024

  • Typ akce podle státní příslušnosti

    WRD - Celosvětová akce

  • Kód UT WoS článku