Homogenization of a Metallic Melt: Enhancing the Thermal Stability of Glassy Metal
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F44555601%3A13520%2F23%3A43897521" target="_blank" >RIV/44555601:13520/23:43897521 - isvavai.cz</a>
Výsledek na webu
<a href="https://www.sciencedirect.com/science/article/pii/S2542529323000408?via%3Dihub" target="_blank" >https://www.sciencedirect.com/science/article/pii/S2542529323000408?via%3Dihub</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.mtphys.2023.101004" target="_blank" >10.1016/j.mtphys.2023.101004</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Homogenization of a Metallic Melt: Enhancing the Thermal Stability of Glassy Metal
Popis výsledku v původním jazyce
Molding and thermoplastic processing of metallic glasses rely on using a homogenized state of the melt or supercooled liquid (structure inherited from the melt). To homogenize metallic melts, however, reaching the liquidus temperature is not sufficient, and the upper temperature for quenching is often chosen empirically. Here, it is proved experimentally via fast scanning calorimetry that the homogenization temperature of a prototyped Au-based metallic melt lies 192 K above its liquidus temperature of 663 K. The homogenized metallic melt has enhanced resistance to phase transformations, better thermal stability and improved glass-forming ability. The existence of a high-temperature miscibility gap, below which the melt spinodally decomposes, is the origin of a homogeneous-to-inhomogeneous crossover upon cooling the melt. When the initial quenching temperature is above a critical temperature delineating the existence of the miscibility gap and a high cooling rate is applied, the homogeneous melt structure is preserved in the metallic glass. Consequently, the glass shows suppressed crystallization on reheating. The enhanced thermal stability of the supercooled liquid promises practical engineering applications such as in thermoplastic forming, additive manufacturing or welding. The present study not only evidences the existence of a high-temperature miscibility gap in the multicomponent glass-forming alloy but also offers an alternative route to improve the thermal properties of metallic glasses for engineering applications.
Název v anglickém jazyce
Homogenization of a Metallic Melt: Enhancing the Thermal Stability of Glassy Metal
Popis výsledku anglicky
Molding and thermoplastic processing of metallic glasses rely on using a homogenized state of the melt or supercooled liquid (structure inherited from the melt). To homogenize metallic melts, however, reaching the liquidus temperature is not sufficient, and the upper temperature for quenching is often chosen empirically. Here, it is proved experimentally via fast scanning calorimetry that the homogenization temperature of a prototyped Au-based metallic melt lies 192 K above its liquidus temperature of 663 K. The homogenized metallic melt has enhanced resistance to phase transformations, better thermal stability and improved glass-forming ability. The existence of a high-temperature miscibility gap, below which the melt spinodally decomposes, is the origin of a homogeneous-to-inhomogeneous crossover upon cooling the melt. When the initial quenching temperature is above a critical temperature delineating the existence of the miscibility gap and a high cooling rate is applied, the homogeneous melt structure is preserved in the metallic glass. Consequently, the glass shows suppressed crystallization on reheating. The enhanced thermal stability of the supercooled liquid promises practical engineering applications such as in thermoplastic forming, additive manufacturing or welding. The present study not only evidences the existence of a high-temperature miscibility gap in the multicomponent glass-forming alloy but also offers an alternative route to improve the thermal properties of metallic glasses for engineering applications.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10302 - Condensed matter physics (including formerly solid state physics, supercond.)
Návaznosti výsledku
Projekt
<a href="/cs/project/LM2018124" target="_blank" >LM2018124: Nanomateriály a nanotechnologie pro ochranu životního prostředí a udržitelnou budoucnost</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2023
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Materials Today Physics
ISSN
2542-5293
e-ISSN
2542-5293
Svazek periodika
31
Číslo periodika v rámci svazku
Neuveden
Stát vydavatele periodika
NL - Nizozemsko
Počet stran výsledku
8
Strana od-do
"nestrankovano"
Kód UT WoS článku
000935404400001
EID výsledku v databázi Scopus
2-s2.0-85149058911