Srazenazver.cz: A system for evidence of animal-vehicle collisions along transportation networks
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F44994575%3A_____%2F17%3AN0000014" target="_blank" >RIV/44994575:_____/17:N0000014 - isvavai.cz</a>
Výsledek na webu
<a href="http://www.sciencedirect.com/science/article/pii/S000632071730263X" target="_blank" >http://www.sciencedirect.com/science/article/pii/S000632071730263X</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/https://doi.org/10.1016/j.biocon.2017.07.012" target="_blank" >https://doi.org/10.1016/j.biocon.2017.07.012</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Srazenazver.cz: A system for evidence of animal-vehicle collisions along transportation networks
Popis výsledku v původním jazyce
We present a system for state-wide evidence of animal-vehicle collisions (AVC). The primary part of this system is a geographic database which is connected to a web-map application. AVC data come from the Police via an online system of traffic incidents (JSDI) and from volunteers through a web or mobile interface. Data are processed using automatic scripts which identify data errors and perform spatial analyses. The application automatically computes AVC hotspots every midnight and crash densities along road sections. Hunter area administrators consequently have an overview of their areas. More than 40,000 records are currently included in this database. 50% of them were added over the last two years when it was launched. The majority of data (90%) came from JSDI. The species is known for 44% of JSDI records. The majority of the identified species were roe deer (75%), followed by wild boar (15%). Roe deer crashes occur most frequently in May within 2 h after sunset. 32.5% (56.4%) of these crashes occur within 1 h (2 h) before or after sunset or sunrise. For wild boar, the values are less distinctive (19.4% and 37.7%). Approximately 1800 AVC hotspots, which cover 0.5% of the Czech road network, were detected and visualized on a map.
Název v anglickém jazyce
Srazenazver.cz: A system for evidence of animal-vehicle collisions along transportation networks
Popis výsledku anglicky
We present a system for state-wide evidence of animal-vehicle collisions (AVC). The primary part of this system is a geographic database which is connected to a web-map application. AVC data come from the Police via an online system of traffic incidents (JSDI) and from volunteers through a web or mobile interface. Data are processed using automatic scripts which identify data errors and perform spatial analyses. The application automatically computes AVC hotspots every midnight and crash densities along road sections. Hunter area administrators consequently have an overview of their areas. More than 40,000 records are currently included in this database. 50% of them were added over the last two years when it was launched. The majority of data (90%) came from JSDI. The species is known for 44% of JSDI records. The majority of the identified species were roe deer (75%), followed by wild boar (15%). Roe deer crashes occur most frequently in May within 2 h after sunset. 32.5% (56.4%) of these crashes occur within 1 h (2 h) before or after sunset or sunrise. For wild boar, the values are less distinctive (19.4% and 37.7%). Approximately 1800 AVC hotspots, which cover 0.5% of the Czech road network, were detected and visualized on a map.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10508 - Physical geography
Návaznosti výsledku
Projekt
<a href="/cs/project/TD03000306" target="_blank" >TD03000306: BLACKSPOTS: Místa křížení zelené a dopravní infrastruktury</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2017
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Biological Conservation
ISSN
0006-3207
e-ISSN
—
Svazek periodika
213 A
Číslo periodika v rámci svazku
September
Stát vydavatele periodika
NL - Nizozemsko
Počet stran výsledku
8
Strana od-do
167-174
Kód UT WoS článku
000410014100019
EID výsledku v databázi Scopus
—